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ABSTRACT

This report covers the derivation of a method of analysis for straight

and curved partial-tension-field beams subjected to lateral pressure.

In practical beams, the webs resist some diagonal compressive stress

after buckling and thus act in an intermediate range between shear-resis-

tant ......_=_ and pure-_n_1o1_-f_e_u webs. Inese beams are termed partial-

tension-field beams. The design and analysis of beams subjected to

vertical stress is satisfactorily covered by the work done by Kuhn and

Peterson. However, when the additional loading environment of lateral

pressure is superimposed on the web of a beam in the partial-tension-

field state, the effects on the stress field can only be approximated,

resulting in undue conservatism. The method developed shows how the

combination of shear and lateral ]oading affects both the web and uprights.

The _nethod relies principally on and is an extension of the work

presented by Mr. Paul Kuhn in Stresses in Aircraft and Shell Structures,

McGraw-Hill Book Co., Inc., 1956. The procedure covers both straight

and curved beams, and illustrative numerical examples are provided.
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H a , H b

SYMBOLS

Edge dimension of plate, in.

Area, in. 2

Flange area, in. 2

Upright area, in. 2

Equivalent upright area, in. 2

Edge dimension of plate, in.

(i = l, 2, 3) Stress concentration coefficients

Distance from neutral axis to outer fiber, in.

Distance between uprights in straight beam; distance between

flanges in curved beam, in.

Eccentricity, in.

Young's modulus, psi

Force in flange, Ib

Shear modulus, psi

Modified shear modulus (pure diagonal tension), psi

Modified shear modulus (postbuckling), psi

Vertical beam loading, ib/in.

Distance between flanges in straight beam; distance between

uprights in curved beam, in.

Tensile load in catenary, lb

Force in the a and b directions, respectively, Ib
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UF

LF

k

k 1

kss

L e

M

P

Pa

Pb

o

Per

P
U

P FL

q

Radius of gyration, in.; integer

Moment of inertia of upper flange cross section with respect to

centroidal axis, in. 4

Moment of inertia of lower flange cross section with respect to

centroidal axis, in.4

Diagonal tension factor

Constant

Buckling coefficient

Distance between uprights, in.

Effective column length, in.

Moment, ib/in.

Pressure, psi

Partial pressure in the a direction, psi

Partial pressure in the b direction, psi

Critical external pressure on curved web, psi

Force in upright, Ib

Force in flange, Ib

Distributed loading, Ib/in.

¥

R, r

S

t

Radii, in.

Vertical load, lb; initial length of catenary, in.

Web thickness, in.

u

Y

o/

P

R + 6, in.

Deflection, in.

Diagonal tension angle, degrees

Angle, degrees; or coefficient.

- viii -

SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

¥

P

6

q, %

0-C

_t

0-U

0- FL

0-CC

_W _nax

_a

nb

_v

T

TO

TC r

P

->

Empirical stress correction factor

Radius of gyration, in.

Deflection, in.

Stress in the a, b directions, respectively, psi

Compressive stress, psi

Tensile stress, psi

Stress in upright, psi

Stress in flange, psi

Crippling stress, psi

Maximum stress in upright, psi

Pressure ratio, pa/p

Pressure ratio, pb/p

Angle; coefficient

Shear stress, psi

Shear stress corresponding to final vertical loading, go' psi

Critical shear stress, psi

Combined loading critical shear, psi

Pois son' s ratio

Leads to

Other symbols are defined as they appear in the text.
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INTROD UC TION

Numerous theories and experimental test results are available in the

literature on the strength analysis and stability analysis of tension field and

partial-tension-field beams. The work of Kuhn (Reference 1) and Wagner

(References 2, 3, and 4) is perhaps best known. The analysis of flat plates

subjected to lateral pressure was investigated by Moness (Reference 5).

Levy, Goldenberg, and Fibritosky (Reference 6) experimentally investigated

the simply supported, long-rectangular, stiffened plate under combined axial

load and normal pressure. Woolley, Corrick, and Levy (Reference 7)studied

c lamped-end c onditions.

The above works omit treatment of combined vertical-lateral pressure

loading. The objective of this study is to develop an analytical procedure

for the analysis of straight and curved partial-tension-field beams subjected

to combined vertical and lateral pressure loadings. The analysis is general

in nature and is applicable to a variety of boundary conditions. The methods

are valid for simple beams, cantilever beams, continuous beams, and other

beam systems as long as the structure is properly idealized for the partial-

tension-field beam analysis.

The first section of this study is a presentation of the state of the art

of the theory for partial-tension-field beams which are loaded vertically.

Tile second section deals with the lateral loading alone. The third section

presents the stresses and deformations due to the interaction of vertical

and lateral loading acting simultaneously. The fourth section presents the

curved partial-tension-field beams. The appendix offers a set of illustrative

examples, some derivations, and the necessary IBM 7094 computer programs

to simplify the numerical solution of some parts of analysis.
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I. PARTIAL-TENSION-FIELD BEAMS SUBJECTED TO VERTICAL LOADINGS

#
INTRODUCTION

This section presents a summary of the current theory of partial-

ten n--- _:_,_ , . .=_,_-i_=iu beams suojectea to vertical ioadings. The design and analysis

of partial-tension-field beams under vertical loadings are well established.

The complete tension-web theory was developed by Wagner (References 2, 3,

and 4) and partial-tension-field beam theory by 14uhn (Reference l). There are

other works in the same field, but in general they are usually extensions

of the theories of Wagner and Kuhn. A summary of the available theory

is needed as the basic foundation for the analysis of the interaction of the

vertical loading with the lateral pressure loading, to be treated later. ,

WEBS

State of Stresses in the Web

Assume a rectangular web which is loaded by pure shear, T.

Figure 1 shows a family of Mohr circles for this loading condition. When

the shear stress, T,increases, the stress field for each increment can be

pictorially represented by a Mohr circle. Each circle is equivalent to a

certain fixed value of shear stress, T i.

From Figure 1 note that an element of the web oriented at an angle

of 45 degrees will be subjected to an orthogonal system of axial stresses,

one tension and the other compression. When the shear stress, r, reaches

a critical value of shear stress, rcr,the thin sheet buckles due to excessive

diagonal compressive stress. Increases in applied load above this vahle

are carried by diagonal tension stress in the web.

To facilitate analysis the nominal web shear, r,is divided into a "true

shear" part, rs,and a diagonal tension part,Tdt.

Tdt =kT 7-s : (l-k)T (For T> Tcr )

-3-
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¢

COMPRI TENSION

Figure i. Family of Mohr Cirlces

where k is the diagonal-tension factor. For a given web system under a

given load, the value of k is given by an empirical expression

k= tanh(0"5 l°g %) (F°rT -->Tcr )

The ratio T/'rcr is called the loading ratio and is a ratio of the total applied

load relative to that portion of the total load carried by the web in pure

shear. Again to facilitate analysis, introduce the identity

T

T
cr

-4-
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Two stages in the web behavior can be recognized:

and a postbuckling stage. The prebuckling stage (Figure

by the following relationship:

a prebuckling stage

1) is characterized

(rl=¢Z =_ for_: -(1

where ¢r1 is the principal compression stress [ inclined at 45 degrees

_r2 is the principal tension stress { to the horizontal

The postbuckling stage is characterized by the following relationship:

1 < _< oo

A pure tension field condition can be approached only in extremely

thin sheets. The analytical model (Figure 2) is assumed to carry only loads

which are oriented in the diagonal direction, which is at an angle a ; the

angle a is the actual inclination of the buckles, approximately equal to 45

degrees. The principalstressesforapurediagonaltensionfieldareasfollows:

O"1 = 0 0-2 -------2T

a 1 =0

q a 2

TENSION
m

._al 02 _e 45 °

Figure 2. Mohr Circle for a Pure Tension Field

-5-
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A pure tension-field condition never exists in actual structures. When the

web buckles, the shear stresses at buckling will not disappear, but remain

as the tension stresses increase (Figure 3). This condition may be repre-

sented by the superposition of the Mohr circles shown in Figures 1 and 2.

Consequently, it is assumed that as the loading increases, the stress-

field changes as is shown in Figure i. When buckling occurs, the process

is continued as is shown in Figure 3.

\

\l

e = -(1 -k

a= + (1-k)-r

Figure 3. Superposition of Mohr Circles

_
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The following relations characterize the behavior shown in Figure 3 :

: 2T-T ; U"I = -T0-_ cr cr

For intermediate levels of loading, the behavior is shown by the

family of Mohr circles shown in Figure 4.

COMPRESSI_

2KLING

TENSION

Figure 4. Family of Mohr Circles for Intermediate

Levels of Loading

For the postbuckling case in which the loading ratio is larger than

unity (l < _ < co), and the shear stress is larger than the critical shear

stress (r > rcr ) the empirical diagonal tension factor k applies.

-7 -
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Figure 5 is helpful to determine k as function of the parameter _'/rcr.

With the aid of the factor k the two components of any value of r can be

determined from Figure 1 and from Figure Z. The results can be

superimposed according to Figure 3.

Consequently, according to Figure 3 , the principal compression

stress is

o- = - r(l-k) sin Zc_
c

and tension stress is

2kr
-- + _"(l-k) sin 2_°-t - sin Z_

It is assumed that flanges are sufficiently rigid to produce essentially a

uniform stress in the web.

The angle _ is close to 45 degrees and usually varies from 41 to

49 degrees. This does not significantly affect the stresses o-c and o-t.

This variation is mostly a function of rigidity of stiffeners and flanges.

If the uprights and flanges are considered rigid (Reference 8), then

= 45 degrees.

2
tan _ =

th E
I+

AFI, EFL

td E 2
1 + sin

A E
U st

og

where

E = modulus of elasticity of material of web

EFI, = modulus of elasticity of material flanges

-8 -
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Figure 5. Graph of T/Tcr Versus k
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E = modulus of elasticity of material of stiffeners
st

d = distance between the uprights

AFL = areas of flanges

A U = area of stiffeners

t = thickness of web

h = distance between the centers of gravity of flanges

If the flanges are sufficiently rigid, which is usually the case, the

following simplified formula (Reference 8) can be used:

_1 1

tan (_ = dt

+A--_

Figures 6 and 7 simplify the computations connected with the above

formula.

The formulas for_ are correct only for the ideal case of a pure

tension field condition. For a partial tension field, the following formula

(Reference 8) applies:

2
tan o_ =

k tans
l÷

e + o. 5 (l-k) (l-k) +
d-_- sin 2a

whe re

AUe = A U 1 +

e = eccentricity of stiffener

p = radius of gyration about area of web.

Figure 8 diagrams the solution of this equation.

-10-
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Figure 7. Tension-Field Factor and Angle of Diagonal Test
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Flange deflection reduces the tensile stresses in the span between the

stiffeners. This makes the distribution of stresses unequal as shown in

Figure 9.

BUCKLES

Figure 9. Unequal Distribution of Stresses

The rna×imurn value of diagonal tensile stresses will be

max 2kr

ort = (1-k) r sin 2_+ C 1 sin Z_

where C l is a coefficient given in Figure i0, as a function of parameter c_d.

This parameter (Reference 8) is as given below:

_h t0Jd = I. 25d sins (iui_ + ill: )

Where IUF and ILF are the n_onaents of inertia of the upper and lower flanges

central axis. For the prebuckling stage, the shear modulus G of the material

usually is used. For the condition of pure tension, the following equation

is recommended to determine shear modulus Gp in the postbuckling stage

- 14-

SID 66-135



NORTH AMERICAN AVIATION, INC.
SPACE and INFORMATION SYSTEMS DIVISION

C1

2.6

2.5

2.4

2.3

2.2

2.1

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

/_d sinh wd + sin
C 1 =--°

2 cosh wd - cos _d

/
/

/
/

I
/

/

/

/
/

/
r

/
/

/
J

I.I

1.0
0 I 2 3 4

_d

/
/

/
/

Figure 10. Coefficient C 1 Versus w d
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2 G

Gp - 3 Z
sin Zo_

This formula is graphically presented in Figure ii. For the post-

buckling stage of the partial tension field beams, the following relation is
used (Reference l):

1 1-k k

G* G G
P

0.8

0.7

0.6

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Au

dt

Figure Ii. Effective Shear Modulus for the Case of

Pure Diagonal Tension
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where G_' is a modified shear modulus (Reference 8), then

G_ --
G

3 2

(1-k)+-_k sin 2cz

A plot of the above equation is shown in Figure 12. An additional

coefficient will be introduced, which accounts for the reduction of the web

strength due to rivet- or bolt-holes (Reference 8).

t d
O - O

/3=
t o

d o

t
o

whe re

d = diameter of hole
o

t = distance of holes
O

The principal tensile stress _rt then becomes

2k]o"t =_ (l-k) sinZa + C 1 sinZa < °'tu
(i-i)

where O-tu is allowable stress (ultimate).

BUCKLING STRESS OF THE WEB

The following formula is suggested by Kuhn (Reference I) "

VCrelast =kss E Rh+-_-(R d - Rh)
(1 -2)

whe re

k
ss

R h and R d

= coefficient obtained from Figure 13.

= empirical restraint coefficients for the vertical and

horizontal edges of the web-panel, respectively, as

given in Figure 14.
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Figure 13. Buckling Coefficients, kss
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0

0

Figure 14.

t
tv

t - WEB THICKNESS

tf - FLANGE THICKNESS

t v - STIFFENER THICKNESS

Rh - RESTRAINT COEFFICIENT ALONG STIFFENER

Rd - RESTRAINT COEFFICIENT ALONG FLANGE
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tf tv
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Empirical Edge Restraint Coefficients for Web Buckling Stresses
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d = distance between the centers of gravity of the stiffeners

h = distance between the centers of gravity of flanges.

The formula is written for the case d < h. Otherwise, interchange

d and h. For simply supported edges, use R = I. 0; for clamped edges,

use R = 1.62.

For h and d, use "clear" values where "clear" values are the distance

between flange edges. This is a deviation from the normal designation. The

elastic stress, calculated with formula (1-2), shall be converted to Tcr by

considering plasticity correction, which is also presented in Figure 15.

The graphs presented in Reference I , page 58, will simplify the

calculation considerably. These graphs are also given in Figures iB, 14,

and 15. The graphs for allowable stress T for aluminum (Figure 16) are

given also. The k shown in Figure 16 is obtained from the equation on

page 4 or from Figure 5.
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Figure ]5. Plasticity Correction
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UPRIGHTS

The uprights will be loaded according to the applicable postbuckling

theory, either tension field or partial tension field.

PURE DIAGONAL TENSION

For the case of pure diagonal tension, Wagner's (References 2, 3,

and 4) method of analysis is applicable. Hence, the force in the upright PU

which is applied by the web is

d

Pu : -S-h--tanc_

where

S = shear force in the bay under consideration

d = spacing of uprights

h = distance between the centroids of flanges

Substituting T= S/ht, then

_dt
o- = - -- tans

u AU e

where Aue
to the web,

is the area of upright. If the upright is eccentric with respect

then

A U

AUe -

1 +(p)2

where

A U = the area of upright

e = the eccentricity

p = the radius of gyration of the area of upright with respect to the

web cente rline

-25 -
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On the basis of tests of Kuhn (Reference

column length of the uprights may be taken as

1 ), the reduced, or effective,

h
L e -

- 2d/h

Le=h

when d < i. 5 h

when d > i. 5 h

INCOMPLETE DIAGONAL TENSION FIELD

For the case of incomplete diagonal tension, Kuhn's method of

determining upright loading is applicable. For this case it is consistent

to assume that the web may also carry compressive stresses parallel to

the uprights. In other words, some effective width of web should be assumed

to be stressed with the uprights. The effective width working with the

uprights was determined experimentally by Kuhn to be

d
e

--= 0.5(1-k)
d

where d e is the effective width. Correspondingly,

k r tan

_u = Au/d t + 0. 5 (i-k)
e/

(r[Iis an average stress value along the length of the upright and is

considered adequate as a basis for computing the column strength of the

upright.

For investigation of the crippling strength of an upright, the maximum

stress of UUmax is needed, which occurs at midheight on the upright. The

graph given by Kuhn (Reference l ) is helpful for obtaining stress ratio

OUmax/Cru versus d/h for various values of k. (See Figure 17. ) The effec-

tive length of the upright is given by

L
e

h
ford<l.5h

_ 2d

- 26 -

SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

and

L e = h for d> 1.5 h

1.4

O*Umo x

_U

1.3

1.7

1.5 J FT"_ I ! ! !

1.2 i i' ; i I "_, _ i :-',,_,,Z _
.... ___ _ --_

1.1 ....... : - r'"---_ _

1.0 .... 1.0 ............ - ,.--.-.---..--

0.0 0.2 0.4 0.6 0.8 1.0
d/h'

Figure 17. Ratio of Maximum to Average Stiffener Stress

Kuhn has stated that the nature of "column behavior" of single uprights

is problematical, because excessive bowing rather than actual failures

usually occurs. Consequently, it is recommended that the following limits

be imposed:

i. crU < column yield stress

_° The ratio or UA U /A U <allowable stress for a column with the
e

slenderness ratio h/2p.
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Usually, however, the columns fail by forced crippling. For this type

of failure, O'Umax is used as a criterion

°'U do-
max o

where oro is allowable stress

2 l

kips/inch z

where

C=21 for 2024-T3 double uprights

for 7075-T6 double uprights

for 2024-T3 single uprights

32. 5 for 7075-T6 single uprights

If cr is above the proportional limit,
o

compression stress-strain curves.

multiply it by Esec/E taken from

C rippling

The above criterion was derived from the test data for uprights of

angles, lipped-angle, and Z and lipped Z sections. Therefore, the empirical

formula may be very conservative for hat sections since there are no out-

standing free legs. The ultimate crippling stress of a closed section can be

obtained by considering the local buckling behavior. Local upright buckling

failure may exist when the legs or walls of the uprights are very thin. The

stresses that would cause local buckling can be determined by determining

the crippling stress when the upright is treated as a free column. The

latter statement is applicable especially when the upright leg thickness is

greater than the web thickness and when Atf/tw d is greater than approximately

0. 2 thickness (where tw is the web thickness in inches and d is the distance

in inches between uprights). (See Table l obtained from Reference 9).

If the ratio of Au/twd is less than 0. 2 for the section, then it is

recommended that the interaction loads from the web to the upright be

considered. By considering the combined web-upright-failure, we have

28-
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the case of "general elastic instability, " since buckles occur in the uprights

as well as the web. The general instability of web and upright for

Au/twd < 0.2 can be analyzed as a simply supported plate with longitudinal

stiffeners (Figure 18}. The critical stress can be represented

(Reference 9) by

T2D
__ (1-3)

¢rcr = K d2 t
w

where 3
Et

w

D = flexural rigidity : 12 (1- _ )in" /lb

P = Poisson's ratio

E = elastic modulus of elasticity, lb/in. 2

K = buckling coefficient (shown in Table 1).

UPRIGHT/

WEB

/

l $ l l

Figure 18. Simply Supported Plate With Longitudinal Stiffener
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The values of buckling coefficient K are presented for various values

of h/d ratios applicable to partial tension field beams and A U/twd < 0. 2

The buckling criteria for Au/tw d > 0. 2 is generally governed by the

upright crippling. The ultimate crippling stress of a section (Reference i0)

is

(Ycc --

N

N

A.
i--I I

(I -4)

where O-cci is the crippling stress (psi) of each of the several elements

Ai is the corresponding cross-sectional areas (in. 2) and N is the number of

elements of the upright cross section. Typical ultimate crippling curves

for bare 7075-T6 aluminum alloy sheet are presented in Figure 19.

Figures 19 through ZI show the relative influence of thermal soak environ-

ment (Reference i0).

To assure conservatism it is necessary to take O'cci = o"o for the

upright leg that is attached to the web. In this manner, the effect of the

diagonal tension folds are properly accounted for. All other upright

members (i. e., the outstanding leg of an angle-shaped stiffener) should

have O-cc i determined from Figures ]9 through gl when using aluminum

alloy 7075-T6.

Upright Instability as a Column Failure

Column failure criteria will govern when the stress in the upright

o-Uequals the column-failing stress of the upright section. The slender

ratio to be used is d/Zp (Reference I ). The buckling of the upright is

enhanced by the lateral load imposed by the web action. For end-restrained

web bay, a restraint coefficient (reduction in allowable stress) of at least

3. 75 based upon tests should be used, compared to 4. 0 based upon Moore

and Westcoat (Reference ll).

Summary for the Design of Upright

The design of uprights is based upon satisfying

T

Tcr _ _ k _ o"U _ o"U
T
cr max
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The following must be satisfied:

I. flu < column yield stress

2. _rUAUe <

A U
allowable stress for a column with the slenderness

ratio h /20
u

1
O"U < Or o

max

for open upright sections where

O-
o

Z

-- tu 1/3

= Ck 3 (7-)

o
o"U < o- cr

max

5. _u < _cr
max

KrrZD Au
for_ < 0. Z

dZt twd -
w

N

i_-_l= Ai O'cc i

N

_. A i
i= 1

for
A U

tw d > O. 2
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FLANGES

PURE DIAGONAL TENSION

The force in flange is

Substituting

M S
F = ± cota

h 2

S

ht

vht

then _FI.= 2AFL cot _ (I- i )

The vertical component of the web stresses or acting on the flanges

cause bending of the flanges between uprights. The flanges can be considered

as continuous beams supported by the uprights. The primary maximum

moment occurs at the uprights and is

Sd2tan
max M' -

12 h

At midbay the moment will be

M = max M'/2

Because of redistribution of stresses in the web, maxMwill also be modified

with indicated factor C 3 which is obtained from the graphs (Figure 22).

max M = (C 3) (max M')

2S

_max = (I + C2) ht sin 2o_

C 3

Where

is a function of flange-flexibility parameter cod:

4_iI t -i'-c) t
_d = 0.45 d + --_

t and c denote the tension and compression flanges respectively.
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Figure 22. Stress Concentration Factors C 2 and C 3

INCOMPLETE DIAGONAL TENSION

The stress in the flange for the incomplete diagonal tension field beam

(Keference i)is as follows:

k _- cot
(T ---- --

F (2AFL/h0+ O. 5(l-k)

This formula shall be used instead of Equation 1-1 .

restrain the same.

All other forn_ulas
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C ONC LUSION

This concludes the summary of the state of the art. Additional infor-

mations maybe found in References 12, 13, 14, 15, 16, and 17. The

formulas and graphs which are presented cover the analysis of partial-tension-

field beams that are loaded vertically. The next chapter deals with lateral

loading only, so that both loadings can be combined later. The appropriate

formulas and methods will be selected from existing literature.
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II. ANALYSIS OF PARTIAL-TENSION-FIELD BEAMS SUBJECTED
TO LATERAL PRESSURE LOADINGS

WEBS LOADED LATERALLY

INTROD UC TION

In this section the procedures to be used to determine the stresses

and deformations in partial-tension-field beams subjected to lateral pressure

are developed.

STRUC TURAL SYSTEM

Under the application of lateral loading, the thin web is treated as a

plate which is attached to the flanges and uprights. Depending on the flexi-

bility of the uprights, the web can be analyzed as a plate resting on rigid

beams (or on the beams of negligible flexibility) or a platej which is con-

tinuous over flexible beams (uprights). The flanges in this case always can

be assumed to be rigid. Figure 23 illustrates the structural system con-

sisting of a plate (web), crossbeams (uprights), and beams (flanges).

x

UPRIGHTS (TYPICAL)

WEB

"FLANGE (TOP AND BOTTOM)

Figure 23. Structural System
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In this report, webs that are able to resist bending are designated as

thin webs. Such webs can be limited approximately by the relationship

b/t _ 150, where b and t are the longer side of web and thickness of web,

respectively. The more exact limitation with corresponding explanation is

given later in connection with Figure 24. Several solutions exist for this

case, all based on small deflection theory. Webs which are unable to take

bending are designated as very thin webs. For very thin webs, lateral loads

are resisted by membrane stresses. The very thin webs are limited approxi-

mately by the relationship b/t __ 400. The division into the two categories is

also dependent on the loading intensity as will be explained later in connec-

tion with the Figure 24. There are numerous solutions for the first category.

There are very few solutions for the second category and these are based on

large deflection theory. There is a gap between these two categories which

has no solution. The analyst must use his own judgment whether to use the

thin or very thin solutions. This report deals primarily with very thin webs

that are in a range of b/t = i000. ]But for the sake of completeness the case

of the thin web shall be considered also.

THIN WEBS

Several methods are presented in the literature which handle this

problem. In the case where the web is thin, uprights and flanges for this

partial loading are relatively rigid. The flat web is actually a two-

dimensional equivalent of the beam (which is really a one-dimensional

element). The flat web resists lateral loads, p,bymeans of direct stresses:

shear stresses, bending stresses, and torsional stresses.

In the usual derivation of the differential equations for a flat plate, the

following assumptions are made:

I. The material is homogeneous, is.tropic, and elastic.

2..
The least lateral dimension of the plate is at least i0 times the

thickness. (In this case, the web is much thinner than that.)

. A vertical element of the plate, before the bending, remains

perpendicular to the middle surface of the plate after the bending.

4. Strains are small.

5. Strain of the middle surface is negligible.

To meet these assumptions, the deflections of the plate must be

small when compared to the thickness. Sometimes the allowable limit of the

deflections for validity of the thin plate equations is referred to as one-

twentieth of the plate thickness; although, for most engineering problems,

42 -

SID 66- 135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

800

750

7OO

65O

6OO

550

500

450

_ 400

350

300

I/

250

2OO

150

100 _-'_/7 THIN PLATES, FIXED EDGES

o I I I I J
0 2 4 6 8 10 12

p (POUN DS/I NCH 2)

I

14 16 18 20

Figure 24. Limiting Regions for Plate Membrane and Thin
Plate Theories
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the calculated deflections, moments, and stresses are probably sufficiently

accurate even though the deflections may be considerably larger. Some

references suggest limiting the deflection to less than one-fifth of the plate

thickness; this is a reasonable assumption.

Timoshenko's Method

Limited test data show that Timoshenko's thin plate equations

(References 18 and i9) describe the behavior of plates reasonably well.

Some error in deflection occurs at low loads since it is very difficult to

obtain initially flat plates as structural elements. The low loads have a

tendency to straighten out any initial waviness in the plate causing consider-

able error in the measured deflections. The equations, however, give

reasonably accurate values for the stresses up to the proportional limit

of the material. Beyond that stress the equations are not correct.

Timoshenko's method is recommended for plate analysis when the

deflection will be small when compared to the thickness. The web is con-

sidered to be a rectangular plate with the edges clamped. This is a good

approximation for webs stiffened with the equally spaced stiffeners because

the rotation at the stiffeners by symetry is zero. Simply supported boundary

conditions are considered also. Figure 25 shows designations for the plate.

The following formulas are derived for thin plates (with the aforementioned

characteristics) loaded with a uniformly distributed lateral pressure. The

maximum deflection at the middle of the plate is:

pb 4
_=_

Et 3

4-__ B ----._

-?-
0

l

Figure 25. Axis Notation
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The maximum moments in planes parallel to xz and yz

for the point (x = b/Z, y = a/Z), are

M = flpb 2 (in.-Ib/in.)
X
max

axes, respectively,

Z

M = _1 pb (in.-lb/in.)
Ymax

The maximum shearing stresses are:

Q
x

max

=ypb (lb/in.) at (x = b/a, y = a/2)

Q = 71 pb (lb/in.) at (x = b/Z, y = a)
Ymax

The maximum vertical reactive forces along the side x = o or b are

w

V =Spb (Ib/in.) at (x = b/g, y = a/Z)
X
max

The values of the vertical reaction at tie corner of the plate is

R = r pb z (Ib)

For all coefficients as listed above (a, /3, Y, 8) see Figures 26 and 27, as

given for the "built in" plates and "simply supported" plates.

Exact Solution

An exact solution is available which considers the continuity of the plate

(web) in the x directions and which also takes into consideration the flexibility

of the cross-beam (uprights in our case). This problem was solved by
Tadahiko Kawai and Bruno Th_rlimann in References Z0 and Z1. The solution

is extremely complex and consequently, is not of much use to a practical

analyst.
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Figure Z6. Coefficients for Plate Having Built-In Edges
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UNIFORMLY DISTRIBUTED LOADING
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Figure Z7. Coefficients for Simply SupportedPlate
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Summary and Conclusions

A method of analysis has been presented to predict the behavior of the

webs under lateral pressure loadings in the prebuckling regime. The analysis

is based upon the plate theory presented in References 18 and 19. The theory

assumes that the deflections of the plate are small and that membrane stresses

are neglected. This analysis should adequately describe the prebuckling

behavior of beam webs which are within the thickness limitations previously
discussed.

VERY THIN WEBS

Very thin webs offer a negligible resistance to bending and can be

approximated by a membrane. The membrane is considered to be supported

on four sides (flanges and uprights).

Square and Rectangular Membrane

Formulas for the membrane solution were derived for isotropic

material by Prof. L. FSppl and are given in Reference 22. These formulas

(Figure 28) were extended for application to rectangular membrane in

References 19, 23, and 24.

Ib
Ie /in.2

a a>b

Figure 28. Square and Rectangular Membrane

The latter solution seems to give good agreement with the limited test

values available, over a wider range of pressure. Also, since the formulas

give larger and consequently more conservative values, it is suggested that

they be used for the design of such membranes until more accurate test data

are available.

- 48 -

SID 66-135



NORTH AMERICAN AVIATION, INC. 8PACK _ INFORMATION _T'KMS DIVISION

For the deflection in the center of the panel

3

=_1 a P_ , a>b8

and for the stresses in the center of the panel:

x Z

cr =_ _-U
y 3

where

Z

U=pZE a

t Z

Similarly, for the stresses in the center of the short sides of the rectangle,

the following is given:

x 4

cr =_7 3_
y 5

and these formulas are applicable for the point, defined with the coordinates

x = b/Z, y = o or a.

For the center of the long sides, they correspond to the coordinates

x = o or b, y = a/Z, will be

£r =W 3_
x 6

y 7

The values _i (i = I, Z, . ., 7) are the coefficients, functions of

a/b ratio and they are given in Figure 29. An additional graph, given in

Figure 30, shows how the membrane theory agrees with the limited test

results. The test specirnenusedwas an aluminum-alloy plate Z3.6 x Z3.6 in.

and 0. 055 in. thick. The _nodulus of elasticity for this aluminum was
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Figure 29. Coefficients for Uniformly Loaded Membrane
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Figure 30. Comparison of Experimental and Theoretical Deflections
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I0.5 x 106 ib/in. 2. The plate was clamped at the edges, causing slight con-

servatism in the analytical results. The membrane equations will be

assumed to be valied when the maximum deflection is equal or greater than

ten times the thickness of the plate. In reality, however, these equations

can be used whenever the deflection exceeds the thickness of the plate.

To determine which theory is to be used, b/t versus pressure is given

(Figure 24), where, b is the smaller side of the plate, and t is the thickness.

Figure 24 includes two sets of curves; one indicates the range of small

deflection theory (thin plates), and the other the large deflection (membrane)

theory which corresponds to the very thin plates. A design engineer, having

the loading, p ib/in. 2,will be able to immediately choose the corresponding

thickness, t,and design the web as a membrane or as a plate. If, however,

the thickness, t,is prescribed in advance, the plate should be checked by both

of above described theories and the more conservative result accepted.

CONC LUSION

In this section the behavior of webs under the influence of lateral

loadings only has been studied. Distinction between thin and very thin webs

was described. The discussion was applicable to all commonly used metallic

structural materials.
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UPRIGHTS AND FLANGES

INTRODUCTION

This section will consider tension-field beams under the influence of

lateral loads without the presence of other loading. The response of uprights

to lateral pressure loading on the beam will be discussed. Strength of up-

rights and the buckling of uprights will be analyzed. Similar discussions

are provided for flanges.

ANALYSIS OF UPRIGHTS

Upright loading exists because of the application of lateral loads to the

plane web system. The tensile stresses which exist in the thin webs tend to

pull the flanges of the beam together, inducing compressive stresses in the

uprights. The lateral load also induces bending stresses in the uprights as

well as the flanges bending them out of the plane. As the lateral loads are

increased, the loads may be reached where upright failure occurs due to

compressive failure or column failure. At this stage, the partial-tension-
field beam is considered to have failed.

Analysis Consideration for Uprights Other Than Stability Considerations

The stresses in the uprights for those uprights that are located on

each side of the web can be determined from the elementary strength of

materials when the tension field beam is subjected to lateral loads. Hence,

upright stresses become

where

Mc P

= eT + E- (Z-l)
e

.

I = cross-sectiona/ moment of inertia, in.

M = bending moment, lb/in.

c = distance from the neutral axis to the outer most fiber, in.

P = compression load in the upright due to tension in the web,

Z
A = cross sectional effective area of upright, ira

e
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4

When the uprights are positioned only on one side of the web,

effective area to be used is

then

A U

A - 2 (2-2)
e

i + (_)

where

A u

Z
= cross-sectional area of upright, in.

e = distance from the web to the centroid of upright, in.

p = centroidal radius of gyration of the upright for bending normal to

the plane of the web, in.

The moment of inertia is to be taken about the bending axis of the

upright whether single or double uprights. First, consider the particular

case of square panels, i.e., d = h, then the distribution of lateral load to

the flanges and upright is shown in Figure 3 i.

where

qo = pd
z

and

=pd
qo Z

w

For triangular distribution of the load acting on the upright, the up-

right (Figure 31(a)) can be considered as a beam column. For design

purposes, the upright is taken to be pin-ended since the upright attachment

to flange section and torsional restraint is small in most flange sections of

diagonal tension field beams. The equations describing the behavior of the

upright shown in Figure 31 are well known (Reference 25). The bending

moment is then

x x

M = C 1 sin .--+ C z cos -+ f(q) (Z-3)] J
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I y

Pu

•_,-- qoz -.._

HA

HA

Z

TH A ow

vr.--.--.,_ x

HA

B

P

Figure 31. Forces Acting on Uprights {a) and Flanges (b)

where f(q) is a term containing q and j, x, and h but no axial load or end

moments. Here x is the coordinate axis that measures distance along the

upright height, and j =_EI/P U. The values of C and f(q) are as follows:

h
For x > 2

C 1 = --2qj3 C 2 = 0 f(q)- 2qjx2
h hh cos_
zj

(Z-4)
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h

For x> 7

where

.3 h .3sin 2__Zqj cos-- --4qj

_ J C 2 =C1 h h

h cos_-_

f(q) = 2qj2(l-_) (2-5)

.Z El
j - (2-6)

Pu

The force PU caused by the lateral load p can be determined from the web

loading, T v . The force, Tv,(See Figure 32) caused by the tension in the web

is a function of the slope at each station along the upright and flange. For

the very thin web system, the value of T v can be obtained from the tensile

stress distribution in the web system.

TV

,11

I

FLANGE

WEB DEFLECTED

Figure 32. Web Tensile Force Creating Compressive Force in Uprights

The vertical load PU induced in the upright due to only lateral-pressure is in

almost all cases very small and can be neglected. The forces acting on

upright for a rectangular web panel cannowbe approximated by those shown

in Figure 33 where q = pd.
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X

HA

HB __q___

Figure 33. Upright Reaction

The reactions and deflection (Reference 26) for the case shown above are

provided in Table 2.

One can use Table 2 to solve for the reaction for the case of triangular

distribution by letting C = 0 and a = h/2.

With the aid of Table 2, the bending stress in the upright becomes

Mc
O'bend = ± -y---

where

c = distance between neutral axis to outermost fiber of upright,

4
I = cross-sectional moment of inertia of upright, in.

in.
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Table Z. Reaction and Deflections of Uprights

q(h-a)

Reaction HA = HB = 2

Location Shear Bending Moment

x_a

x= a

x_ a

h
X =m

Z

qx 2

Qx = HA --

qc
Q

1 Z

qc
Q =--- q(x-a)
x 2

Q =0

qx 3

Mx = HAX 6a

_ qh Z (3a

M 1
4

qx x ,
c c

Mx= MI+ Z

h 2 2

M = q(__ amax 6 ')

qh 4
Deflection w =

max 197.0EI 25--40(h )2 + 16(h )41

Stability Consideration for Uprights

For laterally loaded partial-tension-field beams, the uprights are

generally not subject to stability failure. The compressive load on the

uprights due to lateral loading is generally extremely small in comparison

to upright bending, and for design purposes it can be neglected.

The bending moment induces compressive stresses on one side and

tensile stresses on the opposite side. If the uprights have very thin free

edges on the compressive side, then local crippling may occur. This should

be checked using the method outlined in Section I.

ANALYSIS OF THE FLANGES

The strength analysis of the flanges can be made using the elementary

beam formulas or truss formulas. The stresses obtained are then combined

with the local bending stresses caused by the tension in the web system.

The local bending stresses are obtained by dividing the local bending

moments by the section moduli of the individual flanges.
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Strength Analysis of Flanges

The tensile force existing in the very thin web produces an approxi-

mate triangular load distribution on the flange. Consider only one bay as
shown in Figure 34. The flange can be considered as a fixed-end beam with

the end located at the upright-flange junction. The reactions for such a case

are as follows (Reference 27):

5qodZ

o 96 (2-9)

R ° = -_-qod (2-10)

which says that the maximum bending stresses exist at the upright flange
junction region.

/

/

/

i

_UPRIGHT

Mo M o

f

=
/

I I

I \

f

Figure 34. Strength Analysis of Flanges

The lateral deflection of the flange in the direction of the applied

lateral pressure can be considered as a beam under triangular load and

concentrated load as shown in Figure 35.
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The reaction on the flange due to lateral pressure p is shown in

Figure 35. In addition to the triangular load q (x) existing due to the load

on the web, there exist concentrated lateral forces H caused by the reaction

at the upright ends. Here q (x) is taken to be triangular load as a function

of x, i.e. , distance along the flange length.

H1 H2 H3

qo

x

Figure 35. Reactions Acting on Flange Due to Lateral Pressure

Stability Consideration for Flanges

Lateral Instability of Flange

The lateral load acting on the beam induces compression and tension

on the flange portion as shown in Figure 36. Since compressive force exist

in the flange portion, this section must be investigated for stress and

instability. The flange portion may be treated as a bending moment M

caused by the lateral loading of the beam acting in its plane. This bending

moment may buckle the flange out of the plane, i.e. , sideways.

The bending moment must be less than the critical bending moment,

otherwise, out-of-plane flange buckling will occur. The critical buckling

moment for pin-end beam of Figure 37 is (Reference 28).
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WEB

UPRIGHT

Figure 36. Laterally Loaded Tension Field Beam

_r_GJEI z
M =

cr L
(z-11)

where

G = shear modulus, psi

4
J = torsional constant, in.

E = elastic modulus, psi

I = moment of inertia with respect to z-axis (Figure 37),

L = length of the beam between lateral supports, in.

2
GJ = torsional rigidity, lb/ira

4
in.
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M

M

4
Figure 37. Moment of Inertia of Flange With Respect to Z-Axis, in.

The addition of lateral supports between end span will reduce the

effective length and add some torsional restraint thus increasing the critical

bending moment level. Since it is unlikely for the flange to buckle in this

mode, the conservative assumption that uprights do not influence the buckling

level is suggested. This is especailly appropriate since experimental data

approaches the pin-end upright case rather than the fixed-end case,

Twisting of Flange

is

The maximum shear stress in the flange (Figure 38) due to twisting

(Reference 28).

3T
T - (Z-lZ)
max Z

atf

where

a = flange width, in.

tf = flange thickness, in.

T = maximum twisting moment, in. /Ib
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WEB

FLANGE

M

7-.
tf

Figure 38. Maximum Shear Stress in the Flange Due to Twisting

The distributed twisting moment M t is

Mt :(P___ ) (_)(in.-lb/in.)

therefore,

M L pAtf
T _ t _ (in. -ib)
max 2 8

where A = hL is the area in which the pressure is acting.

The maximum T that can be applied is when T max
equal to material allowable. Hence,

2

atf
= T

Tmax max 3

is taken to be

when T is less than T
max

torsion.

the flange section being studied will not fail in

(z-13)
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CONCLUSION

The methods for analyzing the uprights and flanges of a partial-

tension-field beam subjected to lateral pressure loading have been developed

in this section. The failure of uprights is due primarily to excessive bending

such that the material allowable stress is exceeded. Crippling of the

uprights should also be checked. For the flange portion, the stresses and

the instability modes should be checked using the equations provided.
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III. PARTIAL-TENSION-FIELD BEAMS LOADED
VERTICALLY AND LATERALLY

Sections I and II have treated the behavior of partial-tension-field

beams subjected to vertical loading or to lateral pressure loading. In this

chapter analysis methods are developed which define response of partial-

tension-field beams when these loadings are applied simultaneously.

WEBS

INTERACTION BETWEEN VERTICAL AND LATERAL LOADINGS

It is assumed that both vertical and lateral loadings act simul-

taneously on the beam. Both sets of stresses, as shown in the Figures 39

and 40, must be considered simultaneously.

In the prebuckled stage web stresses can be determined by simple

superposition methods. It is noted that the compression in the diagonal

direction, which causes buckles to form and the transition into the post-

buckling stage, is diminished by the addition of the tension component

resulting from the lateral loading. Consequently, the load range in which

prebuckling analysis applies is increased. However, the post buckled case

is of greater interest.

Postbuckled Stage

Under the application of vertical loads on the beam, the web will be

stressed in shear. At the critical value of shear stress, rcr, the web will

buckle. This is because the shear stress can be resolved into a compression

stress, OVc,in the diagonal direction causing buckling. The critical buckling

value of shear stress, Tcr, can be calculated knowing the material, size,

and thickness of the web. The web can carry applied shear larger than the

buckling shear by tension field behavior since the structural model changes
when the web buckles.

Figure 41, diagram A, shows the increase of compression and tension

stresses as a function of T, which is a function of the vertical loading.
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Figure 39.

'1 k' 2 k'r
10t =_'- J'f'o _ --_
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Stresses Due to Vertical Loading

ay

A

Figure 40.

SMALL

B

Stresses Due to Lateral Loading
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"c' KL'N°

8

NOADIN G )

qt

A. VERTICAL LOADING

Z. 02

Z
9.

B. LATERALLOADING

P- LATERAL
LOADING

Figure 41. Diagrams of Stresses Versus Loadings

After _rcr is reached, buckling occurs, and the compression stress

will not be increased significantly. The tension stress, which is inclined

at 90 degrees to the compression stress, will continue to increase (at a

larger rate) because the model has now changed and nearly all increments

of loading will be taken by tensional resistance of the web. Figure 41,

diagram B, shows a similar relation between the lateral loading and the

corresponding tensile stresses _r 1 and cr 2 as a function of lateral loading,
which is designated by p (pressure).

To preclude web buckling, the combined interaction must satisfy the

relationship:

ix ¢ = o-c cr max

and this can be presented by the compression stress which is shown in

Figure 4Z.
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WITHOUT LATERAL LOADINGr

BUCKLING WOULD OCCUR HERE

////_/

•'r > 'T'cr

m,-

p

Figure 4Z. Combined Compression Stresses in Web

It is evident from this graph that the stability of the web increases due to

lateral pressure, and buckling is postponed.

Interpretation of the Postbuckled Stage

The buckled web consists of a set of wrinkles that are oriented in the

diagonal direction. The cross section through this set will indicate a

wrinkled section which is similar to a corrugated metallic sheet. The

corrugations are very small. The most fundamental question is: Which

structural model is reasonable to use for the prediction of stresses in the

buckled web that takes postbuckling stresses by diagonal tension. Test

results and the observations of buckled webs are of significant help, showing

that the compression stress _rcr that caused buckling does not disappear with
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the change of the model, but either remains constant or slightly increases

with the increment of loading.

The aforementioned corrugation can not provide significant additional

bending rigidity because of the negligibly small height of the corrugations.

The small bending rigidity is negligible in comparison with the axial rigidity

as shown in Figure 43.

°BENDING

A SECTION B BENDING
STRESS

C AXIALTENSION STRESS

°TENSION >> °BENDING

Figure 43. Stresses in Tensile Direction of Buckled Web

It is assumed that the buckled web can be idealized by a set of cate-

naries in the diagonal direction because of the negligible bending rigidity.

The next section will describe the application of the physical model

represented by the catenary.

ANALYSIS OF THE POSTBUCKLED WEB

Inextensible and Extensible Catenary

The web in the postbuckled state will be idealized in this analysis as

a system of catenaries oriented along the wrinkles. The catenaries are

assumed to carry the lateral pressure in the postbuckled stage.

The method of determining the stresses and deformations of an

inextensible catenary is well known. Less known, however, is the case

where the extensibility of the catenary is considered. Since the material is

already wrinkled in the web of the partial-tension-field beam in the
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postbuckling stage, it can be assumed that the deformations may be of

considerable magnitude. In the case of a very thin web, the large deflection

theory to determine the stresses in a membrane has already been dealt with.

The extensible catenary actually presents another case of geometrical non-

linearity (loading versus deflection}; consequently, the linear approach can

not be utilized.

This method of analysis was presented in Reference 28, which was

later extended and modified considerably by NAA-SS_ID. Figure 44 represents

a general case of an extensible catenary that is loaded unsymmetrically.

The distance between the loadings is arbitrary and the supports are on

different elevations.

VA

D

O d

LEVEL

/

/

P°
I

Pn- 1

VB

®

Figure 44. Unsymmetrically Loaded Catenary

(General Case}

For our present purpose, it would be adequate to treat the simplest

case of the catenary. This has the supports on the same level and is loaded

with a uniformly distributed loading. Instead, we will describe the more

general case as presented in Figure 44. This will be useful for possible

future extension of this work. For instance, if hydrostatic pressure or

some other distribution of the pressure is of interest, it is still possible to

use this approach.

Suppose S is the known original length of the cable before it is placed

in the position between the supports A and B. The equilibrium shape is not

known at all; this depends upon the loading. A slight change in the loading
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will be immediately followed by a change in the shape of the catenary.

Under the loading shown in Figure 44, it can be observed that the

deflected shape of the catenary depends only on the distribution of load,

not on the magnitude. The stresses in the catenary depend upon both

distribution and magnitude of the applied loads. If the extensibility is not

negligible during loading, every point O will continue to change its vertical

and horizontal coordinates. When the loading Pi reaches the final value,

the shape of the catenary will be different from the original shape assumed

by catenary at the beginning of the loading process. This final shape is

designated as the extensible shape. The shape as it was originally noted at

the beginning of the process is called the inextensible shape.

Under vertical loading, the horizontal movements of the load applica-

tion points Q on catenary are small in comparison with the vertical move-

ments and, consequently, will be neglected. The following additional desig-
nations are made:

O. = angle between the catenary in the i th bay and the horizontal
1

A = area of the cross section of the catenary

E = modulus of elasticity for the catenary

M. = bending moment at the ith load due to the force system, if H = O
I

H = horizontal component of reaction at supports A and B.

V = vertical reaction at A and B due to the loading.

F. = vertical shear force in the ith bay
I

S = initial length of catenary

d. = initial location of the loaded point 0 measured from the reference
1

line AB. This value is not known in the beginning of the calcula-

tion, and is the function of S and loading Pi"

The reactions V A and V B are determined as follows:

h

V A : R A +H--if: R A +all

h

V B = R B- H--L-: R B -all
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where h/L = a andR A and R B are the reactions of the simply supported

beam of span L loaded with applied loading.

The following formulas are known:

M°

1
d. -
z H

M. - M°

I i-1
F. =

1 ._. - _.
i _-i

F.

l

tan @i H

If the angle of inclination @i is not too large, instead of using the

known relation Sec @. = dl + tan 2 @., an approximate relation will be used:
i I

2

Sec @. _ 1 +--_tan @. = 1 +-_-|--_-+¢_
i i

In Reference 29 Pippard shows how the error varies with the angle @:

0

I0

2O

30

45

6O

tan @

0

0. 1763

0. 3639

0. 5773

1.0

1.7320

Sec @

Accurate

1.0

i. 0154

i. 0642

I. 1547

i. 4142

2.0

Approximate

1.0

i. 0155

i. 0662

I. 1667

i. 5000

2.5

Error

(_o)

0

0.01

0.19

1.04

6.07

25.0
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a

!

6

Further, Pippard shows that the total length of the catenary when

strained is

L
1 2) Z1 +_-¢z +

2H z
(3-1)

whe re

n

z=Z(,i-,i_!)F.2
1 i

(3 -2)

If the tension in the catenary in the ith bay is designated by Ti,

in the length in this bay is

Ti('i-_. )Sec 0.i-1 I

AE

the increase

Since

T. = H Sec 0. = _H 2 + F. 2
I I I

the increase in the length of the catenary is

n

z(,i-,. )See20AE i-1 i

The strained length is given by the following formula

H [ a2 + Z___] (3-3)S +-_-_- L(] + ) H2

Equating (3-i) and (3-3) leads to the cubic equation:

2H 3 L(I +(2)+ 2H2AEIS - L(I +la2)} +Z(ZH - AE} : o

The term AN is much larger than the term H; therefore, the following

approximation can be written:

ZH 3 L(I + Z) + 2HZAE {S - L(I +-_a 2) } - ZAE : o (3-4)
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For any specified length of cable and distribution of load, H can be

determined from Equation 3-4. Now assume that the cable is already preten-

sioned with a load H o before any lateral load is applied. For this case,

Equation 3-4 is modified to

2L(I + oe - H2pI - ZAE = o
oAE +H

o

(3-5)

because the extended length of the cable is equal to the span L, modified with

the inclination factor (i +__I 2)
Z

&

If
AE

AE+H
o

=s
1

H (1+ tx2 )
o

i+
AE

i, Equation 3-5 may be simplified:

2L(I +t_ 2) (H 3 - HZH ) - ZAE = o (3-6)
o

H is the final tension under load (H o is included in H). If the loads

and spacings are both equal and A and B are at the same level (D = o,

o_ = o, P. = P) then
i

3/AEp2 _ 1/H = V (n2 = 0 347 AEP 2(n z - I)
Z4

n denotes the number of equal bays in the catenary.

If the loading is continuous and of uniform intensity p along the length

AB, the shearing force at a distance X from A is

then

Z = p2(l + a z)

L
1

(wL - ×)z
o

dx : PzL3( 1 + c_2)
IZ

(3 -7)

H

3f
AEpZL224

- 0.347 2L 2
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d!

When H is known, the initial location of the loaded points below the

reference line may be found from d i = Mi/H and, consequently, the loaded

shape of the catenary determined. For determination of M i the following

method may be of help:

P1 P2
P3 P4 P5 P6

,IZ

| i

a 2

a 1

5

M = pl a + P2az + P3a3 + P4a4; F = _ Pi
_V i v

I

M ...._

Vl = Pl(al + e) + P2(a2 + e) + P3(a3 + e) + P4(a4 + e) + P5 e

= (Plal + Pga2 + .

%

M_
v
D

.. + P4a4 ) + (P1 e + ... + P4 e) + P5 e

,J

• 5

e_ P. 1

1

C on se quently,

M--,-= M._+ eFm
v__L X v

The moments can be calcuIated from this equation.
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Consider the case of an equally distributed loading p on a catenary

which is initially prestressed with load H before the loading p is applied.
o

where

From Equation 3-7

2L(I + c_2) (H 3 - H2Ho ) - ZAE = o,

1
Z = -i_-p2L3(l + 2) .

This leads to:

ZL3 (
2L(I + 2) (H 3 H2H ) p 1 + _2)AE

o 12

After algebraic manipulation, this becomes:

H 3 - H H 2 p2L2AE

o 24
- o o

Designate H = -a2,o

pZL2AE
- a

24 o.

Then the cubic equation will be:

H 3
+ a2 H2 + a -_ o °

o
(3 -8)

To determine the unknown value for the tension H in the cable, which

is pretensioned with H o and loaded with p, the roots of Equation 3-8 must
be found.

Denote :
2

q = --_-a 2 : _

3 pgL2AE
_( _3ao ) Ir = - "_ a2 = 48
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Then:

= _pZLZAE_Z 3 6

Adding the above equations:

3

3 2 p2L2AE [p2L2AE 2(_I ]q + r = 48 48

This is the governing equation for behavior of the catenary. The value of

the quantity in the bracket will now be examined. Defining this quantity asA :

A.-

If A > 0, there exists one real root and pair of complex conjugate roots.

The above inequality may be expressed as: pZL2AE > 3.56 Ho 3. If,

however, pZL2AE_< 3.56 Ho3 then all roots are real. To facilitate calcu-

lation of the roots, designate the following quantities:

S [ 211,3= r+ q +r

_ o AE >2LZAE o

4-8 2_ + pL _ 48 13.5

1/3

$2= Ir_(q3r2)1'21
3

pZ LZAE H
_ O

48 27

1/3

pL A_ _p2LzAE-48 H3]o13.5

1/3
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with these designations, the roots can be given in the general form:

a 2 H o

HI = (Sl + SZ) - "7- = (Sl + S2) +

S 1 + S 2 Ho i_- (S 1
HZ=- z +'7- +--7-

- S z )

S I + S 2 H i_-
o (S

H3 : 2 + -'7" Z 1 - S2)

This leads to:

H
o

H I : S l + S Z + --7

( ) (i{7, s 2 i_S-+,+ o
H2:S1 Z 2

oH3 = S2 i - 1 - S i + 1 H2 1 +-_--

(3-9)

It is evident that the direct solution of Equations 3-5 and 3-8 appear to be

involved; consequently, it may be simpler in some cases to solve these

equations by a trial and error approach. The solution of the cubic equation

is programmed for the IBM 7094 as part of the catenary analysis program

discussed in Appendix C.

Numerical Example

A simple example will be calculated (Figure 45) where loading and

dimensions are given.

Then 2H3L + ZHZAE(S - L) + Z(ZH - AE) : o which is the equation

to determine H for this case.
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I

I
I

t

!
!

]K

(TYP)

TYP

2K

Figure 45. Numerical Example

A

0.5

I

i

2

i

3

1

4

0.5

B

P°

1

-2

+i

+i

+I

+I

-2

F.

1

-2

-i

0

+i

+2

0

2
F.

1

4

1

0

1

4

2
/xlF.

I

0

2

1

0

1

2

0

Z=6

M = M l+eFnn n- -1

0

-i = -i

-I- I=-2

-2 + 0 = -2

-2+i=-I

-I+ l=0

Collect the terms:

1
--S= 0.65
2

1.15

0.50

2.30

S = 4.60 L=4
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Assume: A = 0.5 in2

E = 8000 Ib/in 2

AE = 4000 lb.

Z=6

This leads to:

H 3 + 0.60 H 2 + 1.50 H = 3 x 103

The solution is H = 1.00.

Now the new extensible shape can be easily found:

Yi = M./H

Actually, the buckled web consists of a set of many catenaries. If

we want the stress/strain conditions in every strip, many calculations must

be performed. The cubic equation to determine H can be solved with the

trial and error method which is time consuming. If the time element is

pressing, it would be useful to have a FORTRAN program. A program of

this type is written and is discussed in Appendix C of this report.

Reactions on Uprights

If the buckled web is idealized by a set of catenaries in the diagonal

direction, it will deliver to the uprights an inclined reaction which can be

resolved into a horizontal component H and vertical component V. Each

strip of the web, which is idealized by a catenary, will deliver this reaction.

The FORTRAN Program, presented in Appendix C, will compute a set of

reactions which correspond, as assumed, with each catenary.
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FAILURE CRITERIA

It is apparent that the controlling factor in any case is the tension

strength of the web, which is the ultimate limit to the loads carried by the

beam. If only vertical loading is dealt with, then in the postbuckling stage,

the web is stressed largely in tension and actual stress must be smaller

than the strength of the material: v _actual < _ultimate" If the web is

loaded up to Crult, no additional load can be accepted. The lateral loading

also leads to the axially loaded catenary. In this case must be H_act <_ult.

o +If both vertical and lateral loadings are present, V act H_act <_ult"

For the case of a beam loaded with both vertical and lateral load, the

nondimensional graph shown in Figure 46 is used.

1.0

vO'act

Oult

1.0

h%ct

ault

Figure 46. Interaction Graph

The straight line assumption is a reasonable simplification. In

reality, the interaction curve is slightly curved because of the geometrical

nonlinearity connected with the stresses and deflections of the catenary.

However, assume that this effect is small. The straight line is also a

conservative assumption because in an extensible catenary the extensibility

reduces the stresses.
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SIMULTANEOUS APPLICATION OF VERTICAL AND LATERAL LOADINGS

The basic assumption made by Paul Kuhn in Reference l is that all

stresses that were developed in the prebuckling stage remain "frozen" in

the web after buckling. After buckling occurre , the rate of increase of

these stresses will be changed, so that the compression stresses will con-

tinue to increase but at a smaller rate than before buckling. The tension

stresses, however, increase at a larger rate.

The question of increase of the compression stresses after buckling

is disputable. Several investigators claimed that the compression stress

after buckling remains constant. Wagner even suggested that the compres-

sion stresses drastically decrease, which leads to the safe conclusion to

neglect them.

The behavior of stresses/deformations due to the lateral loading must

be consistent with the assumption that was made by investigation of stresses/

deformations due to vertical loading. Kuhn shows in Reference l that his

assumption was made in accordance with numerous test results. Since

this work is a continuation of the excellent work performed by Kuhn on

vertical loading, it is logical to keep the same assumptions. This was done

in the beginning of this section and all stresses that were developed in the web

in the prebuckling stage were assumed to be frozen in the web. An increase

in the vertical or lateral loading supplied just additional components to the

frozen state of the stresses. This structural model, however, leads to the

conclusion that the sequence of loading slightly influences the results. This

influence from the practical point of view is not too significant, and from the

theoretical point of view it is open to question.

Many arguments may be presented in favor or against the assumption

that the sequence of loading influences the final state of stress. In reality,

only a well performed testing program may prove it one way or another.

Unfortunately, no such program is possible under this study. Consequently,

it is difficult to answer this question with complete certainty.

Consequently, two procedures are outlined here. The first procedure

is consistent with the assumption of frozen stresses; the second procedure

deviates from this assumption, as will be explained later. The second

procedure is independent of the path of loading and is consistent with the law

of conservation of energy.
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First Procedure

Since vertical and lateral loadings are applied simultaneously, buckling

of the web may occur under some critical combination of shear and pressure

(T*, p*) where

T':"= postponed critical shear due to the presence of p':"(T* > Tcr )

p_'_ : part of lateral loading (p* < Po) which supports the web at

buckling when T"" iS reached.

There are an infinite number of combinations of load (x*, p*) under

which buckling occurs. It is necessary to select in advance any value

T * -_ T cr or p;:" < Po under which it is desired to get the web buckled. If

v _:" is given in advance, then a corresponding p* can be determined. If p;:"

is selected T _'" can be determined.

The characteristic equation for buckling is:

T _:'_: T + 0-"
cr

where o-':: is the tension in the compression (diagonal) direction,

on the lateral pressure loading.

(3 -10)

and depends

This procedure takes into account the sequence of loading. The load

deformation relationships are not linear; and the previously assumed linear

variation of the stresses was a simplification, useful for small lateral

loadings. This simplification will be removed here.

In the prebuckling stage v

Two approaches can be used:

due to vertical loading only was determined.
cr

l* Determine the lateral loading p":"which buckles the web in com-

bination with the assumed shear stress, T ':".

From Equation 3-10: 0-"" : T" - ¢cr" Now T"" shall be transformed

into components in a and b direction where a and b are the hori-

zontal and vertical dimensions of the web respectively. In connec-

tion with Figure 47 the following formula can be used:

2 2
= ¢ cos O + _ sin @ - 2T sin@ COS@

a b xy

(3-11)

T= (o- - _b)sinO cos0 + T (cos20 - sin20)
a xy
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Y

0b

== "rxy

i--
--IID-

D X

Figure 47. Stressed Element

v can be neglected because Txy for our case is small. Conse-

quently, the equation can be written:

A = _ 1 = _ cos@ x 1 cos@
a a

;1.. .,. 2
(3- = O- COS @

a

Since @ = 45 °, the expression for the buckling stress in the

a-direction is

_a':'= _;:'_x 0. 712 = 0. 505 _':"= 0. 5 _:"

In order to find corresponding p_:'_the following formula is used:

(larger side of plate)2

2
t

andq 2 as function of the parameter a/b (where a >b) shall be

obtained from Figure 29.
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a. o

Then:

P = q Z (To-_g side) 2E

Determine the shear stress T '_which buckles the web in combina-

tion with the assumed lateral pressure p,X.

2

-_ 2 E a -'-
U = (p') _ to p"

t

corresponds; a > b

From Equation 3-I0

- Z (q 2 + q 3)

Figure 48 leads to determination of the factor _ = I/2(q 2
as function of a/b (a > b).

+q 3)

@

(I

0.25

O.20

0.15

1.00 1.25 1.50

a>b

1.75 2.00

Figure 48. Coefficient
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Then

Finally

/ --

T cr o-+ -I+
T T T T
cr cr cr cr

-p

r : Y r (3- 12)
cr

A

Approaches 1 and g lead to a critical combination which causes

buckling: (T _:',p"). Since the critical combination under which the buckling

occurred is determined, the corresponded k factor can be found, which is

designated byk _:=in order to show that this factor is actually a function of

To/T_:= rather th_n To/Tcr. The rest of lateral loading (if any)

p,, : p - p-,-

is taken by the set of catenaries. The rest of the vertical loading which is

taken by the set of catenaries {changed model after buckling) corresponds

to the difference (T o - T >'). Then in the usual manner

T

o _ k_:=
T

The compressive stress in diagonal direction:

I. Due to vertical loading:

o- :-r (i
c o

k ':_)sin g

. Due to lateral loading:

= function of ( o a, o-b)

Finally:

0- ---- -- T

I o
(I - k ) sin g_ + o- (3-13)
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The tensile stresses, which are taken by set of catenaries:

1. Due to vertical loading:

.

2 k":"T

' o k,,,.- ,:_o- _ + I- (1 - ) sin 2(_+ o-
II sin 2 a o

(3-14)

This stress component can be interpreted as a prestress in
the catenaries.

!

Due to the lateral loading, the stress _II

following manner:

is increased in the

The prestressed catenary has to support the rest of the lateral

loading which was not taken during the prebuckling stage:

P = Po - p

The appropriate formula given before, or the FORTRAN program

leads to the determination of the tensile stress ¢II and final lateral

deflection y. The input to the FORTRAN program is as follows:

The catenary, which has a length equal to the length of the diagonal,

is prestressed with H ° = 0-ii /A, loaded with p , and has the initial deflection

6 from the prebuckling stage. The output will be final tensile prestressing

H which leads to the final tensile stress in catenary _II = H/l.t, and the

final deflection y.

The most important sequences of loading considered in the numerical

examples are as foltows:

. Vertical and lateral loadings are concurrently applied in a linear

mann e r.

2. Full vertical load is applied, followed by lateral load.

3. Full lateral load is applied, followed by vertical load.

From this study and as a result of many numerical examples, it was

concluded that the sequence of loading has little effect on the results. The

difference in results appears to be primarily due to the change of structural

model from a plate to a set of catenaries with the preservation of the

frozen stresses that existed at buckling. For a practical engineer these
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differences are small. This discrepancy may be eliminated ifthe assump-

tion of frozen stresses is slightly revised for lateral loading. The revised

procedure follows.

Recommended Procedure

The physical behavior is reviewed first as was done on Figure 19.

It seems reasonable to assume, after buckling, that the entire lateral

pressure load is carried by the catenaries. Consequently, at buckling the

stresses due to lateral loading that existed in the prebuckling stage disappear

and a new uniaxial stress system will develop. Since all of the lateral

loading is taken now by the system of the catenaries, the compressive

stresses in the diagonal direction due to lateral loading will be zero during

the entire postbuckling stage. Figure 49 illustrates this. As before, the

o
U

(

/

/
/

/
/ / STRESSDUETOVERTICAL

/ / LOADING

y O'* = acr = "rcr !1

UNIAXIAL STRESS
DUE TO LATERAL
LOADING

TO

m, T

Figure 49. Compression Stresses Due to Vertical and Lateral Loading
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lateral loading postpones buckling to an elevated value of shear, designated

by T". However, when buckling occurs the compressive component is the

same as if the lateral loading were not present:

o- = o- =-S (I - k) sin 2a
I c o

where k is the function of T / T as was shown previously.
o cr

It is noted that at buckling there is a sudden drop in this compression

stress. In the prebuckling stage, as before, the compression stress is

0 = -0- q- O-
I c H i

where

0- = T , where T < T;:¢; = _(c - H_I _a + _ b )

A
for ¢ a and ¢ b use the formulas from Section II:

a 2 b 3

A similar discontinuity in the tension stresses appears at buckling as is

evident from Figure 50.

In the presence of lateral loading buckling is postponed (line a, b)

and will occur at point b. After buckling the system changes and the tensile

stress due to vertical loading immediately increases (point C). The tensile

stress continues to follow the line determined by the vertical loading. Con-

sequently, the tension stress due to vertical loading in the postbuckling

stage is:

2k T
! o

_rii = o- - + T (1 - k) sin2at Sin 2 a o

The entire lateral loading Po is taken by a system of catenaries, shown in

Figure 50. Again at buckling a discontinuity occurs because of the change

in the structural model.
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_ 3-

A, DUE TO VERTICAL LOADING IN PRESENCE OF LATERAL LOADING

Z
O
D

Z
O

Z

I.-

B. DUE TO LATERAL LOADING IN PRESENCE OF VERTICAL LOADING

Figure 50- Tension Stresses Due to Vertical and Lateral Loading
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To determine the total tensile stress in the postbuckling range a

catenary model is analyzed as before. The length of the corresponding
!

diagonal is used for the span. The prestress H o = 0-ii A; the loading Po,

which is a total lateral loading; the initial deflection is 5 = o in accordance

with this assumption. The FORTRAN program or the corresponding formula

leads to the determination of _I! (actually, the output of the FORTRAN is

H, then a II = H/lxt} and final deflection y.

In the prebuckling state

•LI :_ +t H Z

where

0- : T _ T

t

1
= (_a +H 1 _- _b )

for 0-a and _b see formulas in the Section II.

It is evident that this procedure is independent of the path of the

loading. In this case the system clearly follows the law of conservation of

energy.

Consequently, there is no necessity to determine the critical combina-

tion (T*, p') under which buckling occurs because this combination does not

affect the final stresses. All that is needed is to examine whether the bean_

is in the pre- or postbuckling range and then to use the corresponding set

of formulas.

In the Summary the analysis procedure is outlined. If for sonde reason

the analyst wants to postpone buckling during loading, the entire p will be

applied first and then T" will be determined in the previously outlined

manner.

In Appendix B the procedure is illustrated with numerical exan]ple.

All cases examined described the approximate behavior of the partial-

tension-field beam webs under combined loading conditions. For simplicity,

a linear relation was assumed between increment of loadings, strains, and

stresses. This relation may not be linear for certain loading and material

combinations. In these cases, the tangent modulus will be used, and the

curves representing the interaction diagrams will be curved lines rather

than straight. The general approach holds for this case, also.
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SUMMARY OF PROCEDURES

The procedure for the analysis of webs of partial-tension-field beams

under vertical and lateral loading is summarized in the following section.

The following formulas are presented for the analysis of the web.

Vertical Loading

The applied shear

r = V/th
o

The critical shear

r =k
cr SS

d3]1 _ (#)+y (R d

If the web is in the prebuckling stage, To -- _cr

then

l tl:=l ol
If the web is in the postbuckling stage, T O > "rcr

then compute:

k
T O

= tanh (0. 5 log 7- )
cr

To compute the effective area of the stiffener:

[A =A 1+(
u u

e

To determine the angle, c_, use the parameter AUe/dt with Figure 8

AUe instead of A U as indicated in graph). Then compute the stresses:

or =--T (l-k) sinZo_
c o

2kr
o

t sin 2_ o
(l-k) sing c_

(using
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Lateral Loading

Depending upon the loading, Po, and the ratio, b/t, from Figure 24,

utilizing the ratio of the web size, a/b, determine if a thin web or very thin

web is being dealt with and use the formulas for thin plates or membranes,

re spe ctively.

These formulas give the stresses or x and Cry. With the corresponding
Mohr circles or using the formulas, find H o'I and HOt2 for diagonal direction.

Also, find the deflection in the middle of the plate, y.

Vertical and Lateral Loading

Check the compression stress in the diagonal direction.

If

H I]<ITcrt
we are in the prebuckling stage. Then

=--or + or1°'c final c H

°-t final = _ + H _rZ

using Mohr's circle determine o-
max

If

we are then in the

First Procedure

which must be _ o- ultimate tensile.

po stbuckling stage.

It is desired that buckling shall occur at T::-"prescribed in advance.
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Then

.j.

Or" = T _ T

cr

=0.5or
a

_:_ or t or

= a a

P _72 (longer side) _72E

In this way the critical combination ( T , p ) is obtained.

;I-"

It is desired that buckling shall occur at p prescribed in advance.

Then

2

U=(p) E (longer side)
2
t

a/b => fl(Figure 48, page 85)

or =

T
='-- 1" cr

cr

;:4 ;:.-

In this way the critical combination (r , p ) is obtained.

Having the critical combination ( T , p ) in both cases as was shown

above, proceed as follows:

The deflection

8="7

will correspond to p

1 (longer side)
3/p*(longer side)

where N is obtained from Figure 29.
I
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Then the following lateral loading is taken by catenaries:

P" = Po - p

stresses:

:','_ k ¢T /T =>
O

cI = -To (I - k;:")sin 2 _ + c'_

2 k _:"T
I 0 ""

= + T (1 - k") sin 2_ +
H sin Z_ o

Now using the computer program or the formulas with the following inputs:

prestressing H o = _II A, lateral loading p", initial deflection 6, _II and the

final deflection, y can be obtained. Figure 51 clarifies usage of this

procedure.

Recommended Procedure

It is assumed that the vertical and lateral loads are given. If

l°'c- H°'II < [Tcr I

we are in the prebuckling stage.

Then

o-I =- o- + o-Ic H

o-II = °'t + o-3H

where

1

HO-1 = HO-2 = 2-(o- + °'b)a

o- =7 _Ua 2

o-b = W3_U

U = p2E(l°nger side)2
2
t
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If

we are in the postbuckling stage.

There are many combinations of T and p under which the web may buckle.

The method for selecting the proper combination was previously explained.

If the analyst is interested only in the final results, this combination is not

important and the analysis can be continued without T , p

T / T leads to the determination of k
o cr

The compression stress is

orI = --To(l-k) sin 20_

The final tension stress, _ii, is obtained as a result of the computer pro-

gram or use of corresponding formulas. In order to use the computer

program, the prestress load is to be used:

!

H = _ iiAo

where

ZkT
I O

o- = + T (i - k) sin Z
II sin Z (_ o

A = l"xt

The total lateral load Po shall be used for the loading p. Initial deflection

is 6 = o. The output of the computer program is H = 0-ii/A, and the final

deflection is y. Figure 5Z clarifies usage of this procedure.

COiN C LU SIONS

The analysis of the simultaneous action of vertical and lateral loadings

on partial-tension-field beams is presented in this section. For this

analysis only straight beams were considered. Curved beams will be

considered in Section IV.
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UPRIGHTS AND FLANGES

INTRODUC TION

The analysis and testing of partial-tens:ion-field beams subjected to

combined lateral and shear load has not previously been fully investigated.

Kuhn, Peterson, and Levin {Reference 30) experimentally investigated shear

loading. The test results were evaluated, and empirical relations were

generated to analyze the partial-tension-field beam. The results are pre-
sented in Reference 30. A few theoretical considerations on the behavior of

the web-upright flange under shear were investigated by various investigators.

A significant analytical contribution was made by Denke {References 31 and3Z)

who used a strain energy approach to the tension-field beam subjected to

shear loading.

Local phenomena associated with some of the phases were analytically

considered by Denke. The effect of compressibility of the web that reduces

the compressive strength in the upright is considered. The effects of

diagonal-tension-field wrinkles on the bending of the uprights are also con-

sidered. In addition, the effects of cap bending between stiffeners and of

flange and upright axial deformation were treated.

This section will consider the effect of the combined loading, i.e. ,

lateral pressure and vertical loading on the partial-tension-field beam. Both

stress analysis and a method for determining stability criteria for the upright

are included in this section.

STRENGTH ANALYSIS OF UPRIGHTS

Consider the general case for which the web panels are rectangular.

The tension-field beam {Figure 53 ) that is being considered here is subjected

to both lateral pressure p and vertical load V at any stage of web behavior,

but within the stability criteria of the upright. The stability criteria of the

uprights will be discussed in the next section.

Double Uprights

Double uprights exist when uprights are located on both sides of the

web. The upright can be analyzed as a beam column subjected to the various

combinations of loading shown in Figures 53 through 58. The loading q(x)

shown in Figures 54, 57, and 58 (xz plane) is that due to lateral pressure p.

For design purposes, the trapezoidal distribution is represented by a

- i01 -
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m

r--

/

/

/
/
.A

• II

p

t

F =- y

X

SECTION AA

Figure 53. Tension-Field Beam Under Loading

t X

HA I P1

ql (X)

P1

_-q zo

Figure 54. Upright Load-

ing Due to LateralPressure

(x-z Plane)

t X

Figure 55. Upright

Loading Due to

Vertical Loading

(x-z Plane)

t X

_--Ro-_

q2(_ ,8

-Ro---_

-y

Figure 56. Upright

Loading Due to Vertical

Loading (x-y Plane)
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C|

Z

X

P = P1 + P2

IF°Q 1

,,I.----Q2

F°[ ql (X)

P= P1 +P2

X

T
I..,,_IR ° P = P1 + P2

q2 (X) = RoCOS --_ F_

=qoz SIN _Xh IF°

P = P1 + P2

y

Figure 57. Combined Loading

on Upright, xz Plane

Figure 58. Combined Loading

on Upright, xy Plane

sinusoidal loading with intensity qzo acting on the upright in the direction of the

applied lateral pressure load p. Thus, the distributed load can be represented

by

ql (x) = qzo sin _x/h

From simple geometry, the area of the trapezoid to the area of the

sine curve is such that

p_d (h - d/Z)

qzo = 2h

The distributed lateral forces (horizontal forces shown by Figure 58) repre-

sent the horizontal components of the net diagonal web forces acting on the

upright. The intensity of this distributed force is R o. For design purposes

the distributed force can be represented by

TFX rrx

q(x)-- R cos = (°-t w c wo _ t cos _ + _ t sin_) cost

where crt and o"c are tensile and compressive web stresses,

thickness, _ the diagonal fold angle (measured from flange),

in the xy plane.

tw is the web

and force acts

- 103 -
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The concentrated lateral forces, QI' Q2' (]3' " • • ' Qi, represent the

horizontal components of the diagonal web fold tension forces acting at the

various locations, C I, C 2, C3,..., Ci, respectively, on the upright (see

Figure 59). Thus, the forces, QI, QZ, Q3, .... Qi, are considered as the

components of the forces acting in the direction of the lateral pressure, i.e.,

= sin _iQ1 T1 sin_l + TI'

!

Q2 = T2 sin _5Z + T z sin_g

Q = T. sin _ + T. sin
i z i i i

I I ! !

where T I, T Z, T 3 ..... T i and T I , T Z , T 3 ..... T i are the tensile

forces in the web due to the shear force V and the lateral pressure p for the

left and right side of the upright, respectively (Figure 59, diagram A). The

' T,2.' _T_' andtheir corresponding
values of TI, TZ, .... T i and TI, . . . •

lslopes _I' _2," • ' _i and _i Z ' respectively, can be deter-

mined from the catenary analysis. However, these angles are relatively
t

small such that sin _i = _i and sin _i= _i" But for flat beams these are

usually extremely small and generally neglected. Hence, QI' QZ ..... Qi

are all zero.

P

A

J
x

(×)

A. B.

Lateral and Compressive Loads Acting on the UprightsFigure 59.
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The vertical load at the ends of the upright is that due to P1 and P2
where P is defined as follows:

P1 is the upright compression load due to tension in the web during

lateral loading.

P2 is the upright compression load due to vertical loading after the
web buckles.

The distributed compressive force acting along the length of the upright

is that due to the vertical component of the net forces acting on the upright

due to the diagonal web-fold tensions. For design purposes, the distributed

axial forces are taken to be distributed according to Figure 60, diagram B,

i. e., the intensity of the force is F o and is compressive (directed towards

the center of upright). The force decreases linearly to zero at the center

of the upright when the spacing of the uprights are uniform and such that

d >__h and with complete diagonal folds. In almost all previous works in

the literature, the distributed forces are assumed to be added and positioned

as a concentrated force at the ends of the upright. Hence, for d < h spacing

of uprights and very incompletely developed diagonals, it is suggested that

the distributed forces be added and taken at the ends to be conservative.

f
dtana

..,,- d--_d-._

A. d<h

T
h

l
-- d

B. d _ h

d _-_

Figure 60. Net Diagonal Forces for d<h and d>_h
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The consideration that the web adds restraint to the deflection

behavior of the upright can be considered as an elastic foundation effect.

The elastic foundation modulus _ has the units of force per square length.

The reaction to the upright at any cross section of the upright is propor-

tional to the deflection at that section.

The upright boundary is assumed to be simple support since experi-

mental evidence for vertically loaded uprights more closely approach this

boundary rather than fixed or partially fixed. Figure 61 shows (Reference

33) comparison between simple supports, fixed supports, experimental

results.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

h

d

Figure 6 1. Comparison Between Theory and Experin_ent

for Buckling of Upright
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q

The deflection (Figure 62) at any section along the upright in the

direction of the lateral load (z-direction) is

Z --

2h

[qoz_____h

2

Z

+ Q1

_CI _C2 i _-_Chi)]S in---_1 P'p + Q24pFo_hSin -_--(__)+ "i'g_2"+ Qiiin

cr cr

P
cr

where

P
cr

2E I

2
L

e

fix
sin --

h

(3-15)

and L
e

Reference 30.

h = upright free length, in.

E = modulus of elasticity of upright material, psi

I = cross sectional moment of inertia of upright, in 4.

is the effective length of the upright determined empirically as in

See Appendix B.

Z

Figure 62. Lateral Deflection of Upright
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h
L - (3-16)

e

,/
k 2 2 d )_i+ (3 -

for d < i. 5h and for d > i. 5 h, L = h where d is the upright spacing in

inches and k is the empirical constant defined by

(k = tanh 0. 5 Iog--

Tcr

Whenever

p+-g- -1

is less than Pcr there is a finite deflection. The deflection can readily be

computed for any P/Pcr and Foh/4 by using Figure 63. The curves in

Figure 63 were determined by defining the amplification factor, Asy m as
follow s:

for d>h:

Amplification factor = Asy m 1 -7 4P

cr cr

(3-17)

for d< h

where P accounts for F

design.

The deflection of the

Z --

1
A

P
sym 1

P
cr

at the ends of the upright to assure a conservative
o

upright can now be simply expressed as

2hAsy m qoz h

Z Z
p 7r

cr

N rrC. ]

1 wx

+ _ Qi sin ---_-- sin--_
i=l

(3-18)
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4I

1.8 I 1.6
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Figure 63. Amplification Factor for Symmetrical Deflection
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The corresponding slope and bending stress at any section of the upright

can be determined from

sym z i rrx (3-19) .0 = z 2 + _ O cos -'X-
p w i=l 1

cr

and

where

ZEI A [ q h N 'TC. ]

y sym _ OZ I ] _rx (3-Z0)°'bend P h Z Z + E O i sin_ sin

cr y i=l
Y

I

zy =___CYc

is the sectonal modulus. The maximum bending stress occurs at the mid-

height of the upright, i.e., x = h/g such that sin Trh/Zh = 1 in the a above

e quati on.

To the bending stress O'bend we add compressive stresses due to o"c

and cr t (compressive and tensile stresses in the web) of

P

°'c omp A
(3-zl)

where

A = A U+ 0.5 t d (i-k)w

for d<h (Figure 60, diagram A)

or

0-t dsine _ t dcose
tv¢ cw

P= +
2.

0"tt w
P =

2

t dtan e sins
tw

¢ t d tans coso
c w

d sins (1 + tans)

g

o- t dcos s(1 + tanQ,)
c w

Z
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for d>h (Figure 60, diagram B)

h h

crtt w d sincz _c tw d cos cz crttw 2 sin ot + _ctw-_-cos ot
p- + +

2 2 2 2

or

Cttw sin cz cr t cos cz

P- 2 (d +h) + cw h2 (d +-_)

The total stress in the upright due to out-of-plane deflection becomes

cr : cr +_ (3-22)
y bend comp

Y

Whenever _ is greater than the material allowable properties, then material

failure willY exist in the upright such that large lateral deformation will exist.

In addition to _y, there exists some tendency to have a bending stress CZ"

The in-plane deflection y caused by the lateral pressure loading p and

vertical loading V (Figure 64) can be determined from

X
/ /

• y

Figure 64. Net Horizontal Component of Diagonal Tension Forces
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where

for d< h

y _

h AAnti

8_ 2 p
cr
[2 R h I 2_x

o . sin-- (3 -23)

3_ ] h

AAnti =
1 - P _

4P
cr

for d< h

AAnti = I

P Foh

4P 4P
cr cr

The bending stress in the upright is

EI AAnti [_-_ ]
bend = z Z

z 2h P Z R h sin 2______x_xo h
cr z

(3-z4)

and to this the compressive stress due to O- and 0-t is added, i.e. , Equation
3-21. c

The total upright stress due to in-plane deflection of upright is

0- = O- +0-
Z bend comp

The stress can be readily computed with the aid of Figure 65.

Single Uprights

Single uprights exist when all of the uprights are positioned only on one

side of the web. For this case an eccentric load on the upright due to con_-

pressive force 1D and F o is obtained. The deflection caused by the eccen-

tricity can be accounted for by making use of the theory of superposition.

Thus, it is known that the deflection due to eccentric loading is

where e is the eccentricity, in.

(3-25)
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Foh - 0 \

;4-Pcr - 0.4 _

_ 0.8\\\

,, __

z
0 !

<
u

f_

0 0.2 0.4 0.6 0.8 1.0

P

Pcr

Figure 65. Amplification Factor for Antisymmetrical Deflection
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For a simple beam-column (Reference 34 )the deflection is

CO

Z lq/TX
4 M h Z 1 sin --

z - h (3-Z6)
3EI n=1,3,5 nZ(n2- _)

where

P

P
cr

Consider now the case for which web restraint exists. Equation 3-2.6

is modified and web restraint is accounted for and is added to Equation 3-18

by applying the principle of superposition. Thus, the deflection for single

upright case becomes

z [q h _I sin _4-]ZhAsy m oz ZMu + Q. i vx
= S in --_---g 2 + h = t

P
cr

(3 -27)

The maximum stress occurs at midheight, x = h/Z or sin Trx/h = 1.

The slope and stresses for single upright becomes, respectively

_ [o; ++]2 A q h Z Mw + i : wx
sym + Q. sin cos

p _ h =1 1 _ h
cr

(3-2s)

and

0-

bend

2EI A q h 2MTr _rC. _rx
_ y sym oz + + Q. sin t sin

P h 2 h i --
Zs cr i = 1 h

(3 -29)

where Z is the section modulus for single uprights.
s

In addition the bending stress, there exists a conlpression stress due

to compressive loads P and i_o and the local stresses due to local effects.

Thus, the combined stress about the y axis is

o- = o- + o- +o- (3-30)

Ysingle bendsingle c°mPsingle l°calsingle
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where

and

cOmPs ingle local szngle

are given by Equations 3-21 and 3-23 and A(area) in the equations to be used

is £or single upright area. Equation 3-30 is for symmetrical bending about

y axis. For antisymmetric bending existing due to diagonal tension being

formed, the stress is given by Equation 3-25 with I z and areas taken for

single uprights.

Local Stresses Due to Influence of Diagonal Web Folds On the Bending

Stresses of Uprights

The influence of the diagonal web folds on the buckling stress of

upright (Figure 66) can be studied by considering that the diagonal tension

folds produces local bending due to the distributed shear stress induced into

the upright by the web system. The distributed load can be considered

FLANGE DIAGONAL

WEB FOLDS

Figure 66. Buckled Web
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(for design purposes) as a sinusoidal distribution since the web buckled folds

resemble a sinusoidal distribution. By considering only one-half wave

lengths kf as the length and the upright as a beam-column subjected to

sinusoidal loading (Reference 31),

where

LZQ M
xm o

M - -_ (3-31)
m Z L 2 Lcos

J

L -_length

M = bending moment applied at ends (due to eccentric load)
o

I = moment of inertia of upright

P = upright load

Q = maximum load per inch of sinusoidal distribution
xm

The bending moment causes a bending stress of

0-
vb

t LZQ t A zo-
w xm/ w v v

ZE ZE
= +

where

0-
vb

t
w

= stress due to bending moment

= web thickness

(3 =32)
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f-

Z = section modulus

P = radius of gyration =
s

V/7-X

M = o- A z
o v v

A = cross-sectional area of upright

z = eccentricity of the axis of the upright with respect to
middle plane of the web.

_ A 2COS O1
k z

k = distance between web fold crest

= angle of diagonal folds relative to flange

When the load is acting through the center-line, i.e.,
z = oand

symmetric stiffeners,

_vb =

Et L 2 Q
w xm/tw

z E
(3 -33)

STABILITY CONSIDERATION FOR UPRIGHTS

The stability criterion for the upright can be categorized into four

classes: upright buckling, including effective sheet behavior; upright bowing,

including effective sheet behavior; torsional stability; and local buckling

phenomena. To ensure that stability conditions are satisfied, all of the

various buckling criteria should be investigated.
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Upright Buckling Including Effective Web Behavior

Upright buckling takes place as a "snap" or bifurcation phenomenon

when the axial compression loads are equal or greater than P cr' i.e.

• cr

where

(3 -34)

Z

EI
Pcr -

2
L
e

Equation 3-34 is for the symnletric buckle shape.

shape, the buckling criterion is

For antisymmetric buckle

T + 4 3 1 P (3-35)
cr

Upright Bowing Including Effective Web Behavior

When upright bowing exists due to combinations of lateral and vertical

loadings, then the stress level due to bending and compression should not

exceed theo-, • level Generally or- • is the 0. 2% yield point of the
aeslgn " aes_n

upright material with some additional safely factor. The stress o-criteria

then is expressed as

o" < O'desig n

where

or = O-bending + Crcomp + O'loca I

where O-bending, 0rcomp, and O'loca I are given by Equations 3-20, 3-Z1, and
3-3Z respectively, for symmetrical bowing shape. For antisymmetrical

bowing shape O-bending, °rcomp and O-loca I are given by Equations 3-21, 3-24
and 3-3z_ respec_lvexy. Thus, for bowing in two degrees of freedom, bending

about y axis and z axis of the upright must be checked. Furthermore, the

stability type of problem existing here is that due tO excessive deflection with-

out additional load once the stress level in the upright approaches the yield

point of the upright material.
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Torsional Stability

For partial-tension-field beams, the web adds restraint to the twisting

of uprights. The in-plane web restraint is the largest restraint that the web

gives to the uprights. Hence, the most typical rotation of uprights is that in

which the rotation takes place in the plane of the web. The differential

equation describing the behavior of columns attached to a sheet were developed

by Goodier and the results are presented in Reference 9).

By making use of the bending moments in the upright as

d2w dZv
M --EI + El (3-36)

y yd Z yz d 2
x x

M = EI d2v dgw
z zd Z + Elyz d 2- (3-37)

x x

the differential equations become (Reference 9 )

d4w d 2w
EI _ + P _ - EI

y d 4 d 2 yz
x x

d4_ d2_

(Zo- hz) d----$- PYo d 2
x x

--=0 (3-38)

and

C
+ EI (z

1 z o h2]d(CI4_ o

z d 4 ---A--
x

_dZ0

P+ P z2 - ph2/d_o z

d4w d2w
(z -h ) -0

-EIyz o z d 4 PYo d 2 (3-39)
x x

where C = GJ the torsional rigidity and C 1 -- EC w the warping rigidity. The

other dimensions are defined in Figure 67.

For partial-tension-field beams, the uprights can be considered as

simple supports, since test results show that the simple support systenl
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Figure 67. Torsional Stability
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more closely approach test results than fixed ends. Thus, the solution
takes the form

TPX

w = A 2 sin ---if-

_b= A3 sin TrXh

(3 -40)

(3-41)

since these functions satisfy the boundary conditions for simple support.

Upon substituting Equations 3-40 and 3-41 into the differential equations

(3 -42)

'IT

+ 1

A
2

For nontrivial solution, the coefficients of A 2 and A 3 are not equal

to zero and the determinant is made equal to zero to determine the

critical buckling lo_d.

Many of the upright cross sections in partial-tension-field beams

are generally symmetrical about some axis. Consider, for example, the

I, channel and T sections for uprights. For symmetry we have lyz = 0

and Yo = 0 (see Figure 68).

The critical loads become

Z

Cl h--Z-+ Elz Zo_ hz Z

( 2)E1 Tr p A2
Y h 2

=0

2 I P
rr O
--+C- --

h 2 A

2
+Pz

o A3-0

(3-43}

(3 -44)
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[ 1

= y

Figure 68. Symmetrical Cross-Sectional Uprights

Equation 3-43 gives the Euler-type buckling in the plane of symmetry

and the value of I , including some effective web sheet, gives
Equation 3-43 as y

P
cr

2
_ EI

_ Y

2
L
e

where

L
e

h
(3-46)
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for d<l. 5h and for d >I. 5h, L e = h Equation 3- 44 gives the torsional

buckling criteria for which the axis of rotation lies in the plane of the web

sheet as (Reference 9).

P
cr

hz h
CI + Elz Zo - --Z

I 2 h 2o - z +

A o z

I+C

(3 -47)

The section properties C and J needed to determine the warping rigidity

and torsional rigidity as Whown in Figure 69 (from Reference 9).

Local Buckling Phenomena

Whenever the outstanding leg of an upright is relatively thin (same

order as the web), local buckling generally takes place. To ensure that

local buckling does not take place, the empirical crippling criteria

(Reference 1 ) can be used.

where

: CK z/31-:---j/tu\ff
o

1/3

, ksi

C=ZI

C = 26

C= 26

C = 32.5

for 2024-T3 double uprights

for 7075-T6 double uprights

for 2024-T3 single uprights

for 7075-T6 single uprights

Equations 1-3 or 1-4 of Section 1 be used. Use Equation

investigating for Au/twd _ 0.2 while Equation

for Au/twd >_ 0.2.

For closed uprights like the hat section, it is suggested that
1-3 when

(3 -48)

1-4 should be investigated
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2btf3+ htw 3
J

3

tfh2b 3

CW = 24

{l"-_--b'_

-1 I--

b] 3
e = h

b13 + b23

(bl +b2)t3 +htw 3
J=

3

tf h2 b ]3 b/

CW= 1---2"-" b13+b23

r-b 

tw'__ tf l

_-- b --_

3b2tf

e = 6btf + ht w

2btf 3 + htw 3
j-

3

tfb3h 2 3btf + 2ht w

Cw = 12 6btf + ht w

 b--4
Cw

2btf3 3+ ht w

3

b3h 2

12(2b+h) 2
2ff(b + bh + h2)+ 3twbh 1

O = SHEAR CENTER J = TORSIONAL CONSTANT

C W = WARPING CONSTANT

Figure 69. Section Properties

I
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STRENGTH ANALYSIS OF FLANGES

The flange is generally the stiffest member of a partial-tension-field

beam. The strength analysis of the flange can be approached from the

elementary strength analysis of beams subjected to lateral and vertical

loads. By considering the flange as a continuous beam on elastic supports

(uprights), the bending moment in the flange at the upright can be obtained

by adding qd2/12 to that bending moment expressed by Reference 30 such

as that

2
Sd tan _ qd 2

M = C 3 +-max 12h 12

where the first term is that due to vertical shear load; and the second

term is that due to lateral pressure causing tension in the web. The

buckling stress in the upright is then

M c
max

O" =fl:

where

c = distance from neutral axis to outer fiber of flange, in.

IFL = cross sectional moment of inertia of the flange, in 4

S = shear force in bay under consideration

In addition to the bending stress in the flange there is a compressive stress

in the flange of Reference 1.

O-
C

k T ht w cot

ZAFL + 0.5(J-K)

where

A

= is the shear in the panel under consideration

FL = is the flange cross section.

The stresses due to bending and compression must be less than the

design allowable.
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STABILITY CONSIDERATION FOR FLANGES

The general stability of the partial-tension-field beam should be

checked when subjected to any vertical loading or any axial compressive

loading that may induce compressive stresses in the flange member. The

type of instability involved is one that the beam deflects out of the plane of

the web. The method of determining the allowable flexural compressive

stress is Reference 35.

x0 (s
for the loading shown in Figure 70.

jL 2
l+ 0.078

I d2

YY

Figure 70. Determination of the Allowable Flexural Compressive Stress

The simplified formula to predict lateral stability that neglects the

effect of loading is given by Reference 36. Such simplifications are in

common use and are presented as

i02,000
O- -

2

for

KL
--> C

r
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and

for

KL
o- =B-D--
c r

KL
--<C

r

where B, C, and D are defined by the mechanical properties shown in

Figure 71 and can be obtained from Figures 20 and 21 for 7075-215 as

a typical aluminum alloy.

.____..--C -......--_

KL

r

Figure 71. Column Strength Curve

The numerical values for K are defined as follows:

K = 0. 5 fixed ends

K = 0.7 one end fixed and one end pinned

K = i. 0 pinned ends

I< = 2.0 one end fixed and one end free
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The values for r (radius of gyration) to be used is as follows:

(a) Symmetrical I and channel beams and girders, supported at ends

z 3r = --g--
c

+ O. 038J (KL) Z

(b) Cantilever I sections and channels loaded at free end

Z = 1.28 --_ _Cs + 0.038J (KL) 2

c

(c) Cantilever I sections and channels loaded uniformily along

length of beam

r = 2.05 C + 0.038J (K
s

c

where

I
Y

S
c

4
= moment of inertia, in.

3
= section modulus for beam about axis normal to web, in.

C = torsion warping constant defined by Figure 69 (defined as C W
in Figure 69), in. 6

4
J = torsional constant, in.

L = lateral unsupported length, in.

SUMMARY AND CONCLUSIONS

The structural behavior of uprights and flanges of the partial-tension-

field beam subjected to combined lateral pressure and vertical load is pre-

sented. Formulas and graphical aids have been included in determining the

stresses and stability of the uprights and flanges. Accuracy of the basic

assumptions has been included. Empirical effect has been included in the

analysis by taking into account the behavior of diagonal web folds as bracing
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%

effect for the upright for partial-tension-field beams. The equations can

readily be applied for pure diagonal-tension-field beam by letting the

diagonal tension factor be equal to unity. Both single- and double-upright

arrangements have been considered.

The analysis of the flange is based upon the application of elementary

strength analysis when considering the effect of lateral loads. The analysis

of partial-tension-field beams subjected to vertical loading has been analyzed

similar to the earlier researchers.

The energy method is applied to formulate the equations describing

the behavior of the uprights. The total energy of the system consisted of

the strain energy of the upright bending, strain energy of the web system,

potential energy of the in-plane forces, and the potential energy of lateral

loads. The arbitrary deflection coefficients are determined from appli-

cation of the stationary potential. Both symmetric and antisymmetric

deflections were considered. The bending stress was obtained from the

deflection function. The compressive stress was then added to the bending

stress to determine the total stress in the upright.

The buckling criteria for the upright was determined by letting the

denominator of the deflection function approach zero. Empirical effect on

the stability of uprights was considered by letting the elastic restraint of

the upright-web system be represented by the critical load as determined

from a previously published test. The symmetrical buckling mode has

been defined as one that gives critical load when the upright deflects out of

the plane of the web. For antisymmetric buckling mode, the level of

buckling was found to be approximately four times that of the symmetric

mode. Here, antisymmetric buckling is one that considers an upright to

buckle in two half waves in the plane of the web system.

Other buckling phenomena included the determination of forced

crippling, crippling, and torsional buckling criteria.
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IV. CURVED BEAMS

INTRODUCTION

The cases for straight beams which were considered in the first three

sections are special or limiting to curved beams. The radius of curvature,

R, approaches infinity for straight beams.

In this section, a method of analysis is developed for analyzing curved

partial-tension-field beams. As in the case of straight beams, vertical

loading and lateral pressure are the loadings considered. The analysis

procedure is general. Curved-beam analysis methods closely follow those

developed for straight beams, though some alterations are made necessary

by geometrical load- and stress-distribution variations brought about by
beam curvature.

Most of the straight-beam nomenclature is directly applicable to

curved beams. Panel dimensions, h and d, and the diagonal tension angle, _,

are defined in Figure 72. The basic assumptions used for straight beams

are also used for curved beams, i.e. , heavy flanges, relatively heavy

uprights, and thin webs.

A new consideration is the treatment of curved beams with finite

values or R/t >_ 1000. The beam radius of curvature R is finite for a

curved beam.

It is assumed that the analyst is familiar with structural analysis of

curved beams and that, for any statically determinate or indeterminate bean],

he can determine (1) bending moment, (2) torsional moment, and (3) shear

at any section of the curved beam. Axial loads on the beam are considered

in the analysis by assuming that all of the axial load is carried in the

flanges of the beam.
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Figure 72. Curved Beam Equilibrium
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CURVED-BEAM AND LOADING CONFIGURATIONS CONSIDERED

In this study, beams under consideration are limited to those having

beam height (dimension d in Figure 72) relatively small compared to length

or circumferential dimension. Two flanges, one upper and one lower, are

connected by vertical uprights that separate the web panels.

A beam of this type will normally be supported laterally at the ends

and at intermediate points along the flanges. Lateral support could be

furnished by crossbeams or by bulkheads. Pressure-tight bulkheads may

introduce axial-stress components in the web and uprights when the struc-

ture is subjected to pressure loading; however, this effect will not be

considered.

Curved beams with two loading conditions (vertical and lateral

pressure), and combinations of these, are investigated in this study.

two types of loading are as follows:

The

l0 Vertical beam loading includes any vertical (in plane of the

web) loading applied to the flanges. This loading may be in the

form of concentrated loads or, may be applied as distributed

loading along the flanges. The beam flanges are considered to

be relatively stiff, so that all vertical loadings applied to them

will be carried over to adjacent uprights. Due to beam curvature,

loading eccentricities will set up a torsional moment in the beam

cross section. This torsion will be counteracted by the flanges.

Lateral pressure loading will be applied primarily to the web

panels.

Two phases of loading will be considered, (1) prebuckling, and (Z) post-

buckling. For the prebuckling phase, the stress distributions in webs, web-

attachment joints, flanges, and uprights are straightforward. The

occurrence of web buckling will be predicted under combined loading. After

this nonlinear perturbation, postbuckling development of diagonal tension will

be investigated during load build-up to failure.

The modes of failure covered are as follows:

Web material ruptured in tension, including rivet or fastening failure

at web connections to flange or upright
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Upright failure by column buckling, bending, or forced crippling

Flange failure by the same mechanisms as the uprights

Due to curvature, structural-system analysis is more complicated in

the curved-beam than in the straight-beam case. A three-dimensional

rather than a two-dimensional deflection system results from the curvature.

As seen in Figure 72, the eccentricity of loading produces overall torsion

in the beam. This torsional moment is carried by the forces labeled Sy/d

applied to the flanges. This is in addition to the beam bending and shear

effects-produced in straight beams. As in the case of the straight beam,

loads will be assumed to be carried as follows:

Beam bending will be resisted by flanges only.

Shear load will be supported by webs only.

Beam torsion will be reacted by the flanges only.
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CURVED VERSUS STRAIGHT BEAM COMPARISON

Curvature makes it possible for the web to support a higher pre-

buckling shear load than the flat web panels of the straight beam. In

general, the higher the curvature, the more load may be carried; as

increased curvature, tends to stabilize the web. This curvature effect

delays buckling of the web under shear loading. Buckling may also be

delayed by internal lateral pressure. Conversely, external lateral

pressure will tend to decrease the buckling shear load.

Above the buckling shear load, a thin curved web will tend to deflect

toward a flat panel configuration. It is expected that this phenomenon would

be accompanied by a marked, incremental, vertical beam deflection as the

curved diagonal-tension panel elements straighten out. In the postbuckling

phase, the curved beam web panel (buckled into a flat configuration) should

react to either internal or external lateral pressure loading in a manner

roughly parallel to the straight beam web-panel behavior. Diagonal-tension

stresses (in diagonal catenaries) will continue to build up with vertical and/or

pressure loading until the web ruptures.

External pressure will tend to reverse web-panel curvature and,

depending on the panel-aspect ratio, the loads will be carried to the

uprights and flanges by catenaries with reversed curvature. If the panel

is narrow, the more closely spaced edge members of the panel will support

the majority of the load.

The uprights will support essentially the same types and components

of loading as for the straight-beam case. One additional component will be

the radial load caused by web-sheet loads acting at panel-intersection angles,

brought about by the postbuckled polygon shape (Figure 73, diagram C).

This shape results from the web panels buckling into approximately flat-sheet

elements between uprights.

The main differences in flange loading between the straight- and

curved-beam configurations will be caused by the beam torsion introduced

by the loading, (Figure 72). Also, lateral pressure loading will produce

axial loads in the curved flanges; while in straight beams, the primary loads

in the flange will be lateral and vertical bending only.

- 135 -

SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS I)IVISION

II

Z -al.£

u.

z _
5
u_

0
Z

q
Z

0
u

0
Z

.<

o

5

o
v

a
.<

q

0
Z

._1 _'1

o_
2:5

uZ

d

°r4

0

I:m

"0
¢)
t>
o

O

o4
[,,..

¢J
td

°ed

136 -
SID 66-135



"NORTH AMERICAN AVIATION, INC.

/

SPACE and INFORMATION SYSTEMS DIVISION

CURVED WEBS

The thin sheet serving as web in sen_itension field beams will sustain

only a limited amount of shear and/or compressive stress without buckling.

Added loading with internal lateral pressure will cause a postponement of

buckling until higher shear loads are applied. Conversely, external

pressure reduces the amount of shear the web is able to withstand at

buckling.

Two phases of web loading may be defined (1) prebuckling, and (2)post-

buckling; these are separated by the web buckling phenomenon. The two

phases will be considered first for beam vertical loading only, then lateral

pressure loading only, and finally for combined loading with various loading

s equenc e s.

VERTICAL LOAD_G

This loading may be a concentrated vertical load, such as S in

Figure 72, or any distributed vertical loading along the flange. It will be

assumed that all loading between uprights will be transferred to adjacent

uprights by relatively stiff flanges. If the loaded flanges were not stiff, the

loading would still be transferred to adjacent uprights, but the flange

deflection under load would cause a change in stress distribution in the

web. The web cannot support significant in-plane compressive

stresses, but panel boundary or edge movement would affect web stress

distribution.

Pr ebuckling Stage

Under beam vertical loading, the web panel will be required to support

only shear loading. If the joints between the uprights and flanges are

pinned, web shear stress in the loading configuration of Figure 72,

dia gram A.

S
T - (4-1)

dt

For the thin web sheet considered,

where or t and o"c are oriented in diagonal directions.

(4-2)

137 -

SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION"

Mohr's circle demonstrates this stress condition in Figure i. As

vertical beam loading increases, web-shear stress, T, the principal tensile

stress, o"t, at 45 degrees, and the principal compressive stress, o-c, in

the orthogonal direction, all increase in proportion, until the buckling load

is reached.

Web-Buckling Phenomenon

At buckling, a radical redistribution of stress occurs and a new

mathematical model is required. Mohr's circle no longer portrays the

stress system. As in the case for straight beams in Section I,

(Reference 30, Part I) furnishes a direct approach to predicting the buckling

shear, Tcr.

2
rr Eh 2

T = k s (4-3)
cr IzRZz 2

where k s is found from Figures 74 and 75, and

h2
Z - Rt 1 - /x 2.

These curves are based on simple-support edge conditions. For the

relatively thin webs used in diagonal-tension-web beams, the effects of

edge restraint die out rather quickly away from the edge due to low sheet

bending stiffness. On this basis, these curves are applicable to curved

webs with any degree of edge restraint up to the limit of fixed or "built-in"

panel edges.

An alternate theoretical approach from a more recent work by a

Russian author, V. A. Marjin (Reference 37), is presented. The buckling

parameters of curved plates, using both small and large deflection theory,

are portrayed in Figures 76 and 77. The variation between the two

approaches is readily apparent by comparing curves of the two graphs.

Some "thin" web configurations may be best handled as shown in Figure 76;

while the "very thin" web should conform more closely to the curves of

Figure 77.

The Kuhn approach (Reference i) is based primarily on empirical data.

Having available the above-mentioned methods for determination of the

critical shear in the curved web, the analyst may choose one of them which

appears most appropriate to the specific configuration being analyzed.
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Figure 74. Critical Shear-Stress Coefficients for Simply Supported

Cut"red Plates, Plates Long Axially
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Figure 75. Critical Shear-Stress Coefficients for Simply Supported

Curved PLates, PLates Long CircumferentiaLty
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Figure 76. Curved-Web Critical Buckling, "Small Deflection" Theory
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Figure 77. Curved-Web Critical Buckling, "Large Deflection" Theory
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Postbuckling Stage

In curved semitension-field beams with usual geometric proportions,

the web will tend to buckle into flat panels between the uprights. This

results in a polygon shaped section (Figure 73, diagram C). Tension in the

thin-web diagonal-tension elements tends to pull the web into a flat panel,

and diagonal buckle waves across the panel tend to stiffen the panel as sheet

material moves out of the neutral plane of the sheet. As the wave crests

move out of the neutral plane, higher bending moment of inertia in the

direction of the ridges is produced in the sheet.

As the diagonal section of the curved sheet buckles, it tends to move

into the plane of the chord (C---h2 of Figure 78). The lengthening of the

chordal distance is accompanied by relatively high panel-shear deformation.

As the panel frame distorts into parallelogram shape, high tensile stresses

at angle o_will be set up in the larger opposite corners of the panel (upper

left and lower right corners in Figure 78) because of "gusset" effects.

(
d

J

h --"-'---_

J

I \
%/- ',! ,

 Jlm,,,,
_h I =2R sin 0--.-21

2

C-%2=_,/sin a

\

r2

\ 02 \

-.a

Figure 78. Geometric Relationships of Diagonal Tension Strips
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The flat panel buckled configuration will be somewhat modified near

the flanges, as the flanges will be stiff enough to restrain sheet edge shape

in these areas to the original lateral curvature. The edge-curvature effect

decreases as R/t increases from the lower limit of 1000, and as the sheet

becomes thinner, therefore decreasing sheet-bending-stiffness effects.

From the geometry in Figure 78, the change in chord length may be

computed to be

h

ACh 2 = - 2
sin o_ 82

sin
2

(4-4)

where

_2 = COS

and

( h)1 - cos _-_ sinol

K1 = h (4-6)
sin

2R

This derivation is based on the assumption that the shape of the curved

cylindrical section at angle _ approximates a circular arc which is defined

by chord CH Z and 8. Also the assumption is made that _ may be measured

by the angle between the chords. This approximation becomes less valid at

large ratios of h/R. The center dimension, 8 , is equal to the center dis-

tance between Ch 1 and the associated arc of the curved web panel

(Figure 78). A curve defining the relationship between 82 and h/R is

shown in Figure 79.
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For reference, the radius, r 2, may be defined by

+ + z
r2 = = 88

4_ 2

2 2

lC'-hl/ JR(1 --_)]\s-_na/ + 4 - cos

2
201

sin 2 (4-7)
R------_- + R I - cos

sin _

The beam is assumed to deflect sufficiently that the buckled-flat-panel

A Ch 2 strains are absorbed, and the loading maintains its original value as

it moves during beam deflection. Under these conditions, the opposite

larger corners of the panel will show higher-than-average stresses due to

the gusset effect. As a result, the upright will tend to deflect in a modified

S shape. The definition of these stresses appears to be a complex task, and

it is probably not very significant in the overall analysis. On this basis,

they will be disregarded in this study.

The lateral angle between buckled, adjacent flat panels of the curved

beam will have some effect on the web stresses. However, in this config-

uration, the stiff uprights will minimize the effect, and for the present

analysis, web in-plane stresses are computed by essentially the same

methods as for straight beams (simple-support edge conditions).

The development of the stress system under increasing loading as

explained in Section I is applicable. The compressive stress, gc' which
is perpendicular to the diagonal-tension elements, will maintain
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approximately the same value as at web buckling during additional load

application. The value of wc from Kuhn (Reference i) is

cr = -T (l-k) sin2o_ (4-8)
C O

The trigonometric factor is applied, because of the difference between

the 45-degree pure-shear-induced principal stresses, and the angle, or, of

the diagonal tension elements. A shear stress component is built up as ot

varies from 45 degrees. At c_ = 30 degrees, the shear component is about

25 percent of the compressive stress component.

The tensile stress along the diagonal tension elements at the angle or.

may be calculated from

2k T o

+ z (l-k) sin Z _ (4-9)
°rt - sin Z _ o

where r ° = S/dr for the loading in Figure 7Z. The discussion of the last

paragraph relative to the trigonometric factor applies also to the trigonometric

factor in the second term of Equation 4-9.

The value of k, the diagonal tension factor, is found from the following

equation (Reference 30, Part I).

I T°Ik = tanh 0. 5 + 300 td log
T

This equation may be solved with the aid of Figure 80.

(4-10)

The value of c_ PDT, the angle of pure diagonal tension, may be found

from Figure 81. The structural geometric and loading configurations must

be known, along with Young's Modulus of the web material.

The diagonal tension angle, a, for less than fully developed diagonal

tension, is a function of k, the diagonal-tension factor. A curve of empirical

data from Reference 30, PartI, is shown in Figure 81C. This shows the

relation ofc_/c_pD T to k. Reference 30, Part I states that the value ofc_
found from this curve should be within Z or 3 degrees of the final computed

value, using the iterative procedure prescribed in that report.

These stress formulas may be applied up to ultimate loading. Web

loading is limited by the attainment of ultimate tensile stress in the sheet.

The ultimate stress will often occur at the web attachment joint to the
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Figure 81.

(B)

Angle of Pure Diagonal Tension (Sheet 1 of Z)
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Figure 81.

k Au - 1.00 = tAF..
ht dt(c)

Angle of Pure Diagonal Tension (Sheet 2 of g)

uprights or flanges. This is due to the stress concentrations normally

associated with structural joints.

The ultimate shear stress in the curved web, Tal I, may be calculated

from the empirical equation of Reference I.

T =T (0.65 + A) (4-11)
all all

':" for 2024-T3 or 7075-T6 aluminum alloy iswhere the flat web value, Tal 1

found from Figure 82, andAis calculated from the empirical expression

A = 0. 3 tanh
AFL A U

+ 0. l tanh
dt ht

(4-12)

The correction factor, A, for curved webs may be read from Figure 83.

It is noted that Tal 1 can exceed T-'::all because the quantity A can

exceed the value 0.35 if the flanges and uprights are heavy. The explana-

tion lies in the fact that a grid system of uprights and flanges can absorb

some shear; the effect is analogous to the portal-frame effect in plane-web

systems.
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Figure 8Z. Basic Allowable Values of rma x
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Figure 83. Correction for Allowable Ultimate Shear Stress in Curved Webs

The value of Tall found in Figure 8Z should be adjusted according to

the ultimate-stress values of the particular materials used. The data of
J_

the figure is based on stress values noted in the title. The value OfTal 1

then should be modified by multiplying the graph value by the ratio of actual

ultimate stress to the value noted in the applicable part of Figure 82.

The empirical value of T": the basic allowable may be modifiedall'
according to Reference 1 by the following consideration relative to flange-

web and upright-web joints:

1. Joint bolts just snug, heavy washers under bolt heads, or web

sheet between flange angles: use basic allowable.

2. Bolts just snug, bolt heads bearing directly on sheet: reduce

basic allowable 10 percent.

3. Rivets tight: increase basic allowable 10 percent.

4. Rivets assumed loosened in service: use basic allowable.

These rules hold if allowable bearing stresses of the rivets or bolts

on the sheet are not exceeded. Also, they are not applicable to counter-

sunk rivets.
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LATERAL LOADING - INTERNAL PRESSURE

Internal lateral loading will be defined as uniformly distributed pres-

sure loading acting in the radial direction from the center of curvature. The

curved web will be considered to be of cylindrical shape. In general, the

web is a "thin" or "very thin" curved plate, simply supported on all four

sides by uprights and flanges.

This static system is different from the usual cylinder, which has

known membrane loads, (pr and pr/2), due to either internal or external

pressure. Boundary conditions make the curved plate work differently

from a cylinder. Due to pressurization, the curvature will change, and in

the direction parallel with uprights, curvature will be introduced. There-

fore, we have a surface with double curvature.

Figure 84 illustrates deformations of both a long cylinder and a

simply supported cured plate. The difference of the resulting surface is

evident. The cylinder will be deformed into a similar cylindrical surface

(if observation is made at a significant distance from the bulkheads), but

the curved cylindrical web will be deformed into a new surface of double

curvature. Consequently it is not desirable to use formulas for the deter-

mination of stresses based on pressurized cylinders.

U nfo rtunat ely,

such curved plates.

this subject.

it is not a simple problem to derive the formulas for

There appears to be no coverage in the literature on

Of some significance for this work is the "very thin" curved plate

analysis. A search of the literature discloses the work of F_ppl(Reference 22),

who solved the case of "very thin" rectangular plates (without curvature),

simply supported on all four sides, under normal loading. This method is

presented in Section II and is applied to rectangular webs without curvature.

The flat web case, however, can be regarded as a special case (R =¢0) of a

curved plate.

Here an attempt is made to devise a method for the determination of

approximate stresses and deformations in curved, simply supported, "very

thin" sheets. Advantage will be taken of the theory of catenaries and the

Marcus theory for analyzing rectangular plates.

The theory of Marcus is unique and simple. He considers two mutually

perpendicular fibers of the plate, located parallel to the sides and passing

thru the center of the plate. He applied his method to "thin plates. " The

total lateral-pressure loading, p, is separated by Marcus into two unknown

components, Pa and Pb; where Pa is the partial loading applicable to the

strip in the "a" direction and Pb the partial loading applicable to the strip in
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t
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S'._._ _ _ NON-PRESSUrIZED R
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"-  .Ess0,,zE0
A-A CONFIGURATION B-B

Figure 84. Comparison of Deformations Due to Internal Pressure,

Cylinders, and Curved Simply Supported Sheets

the "b" direction. The equation p = Pa ÷ Pb holds. Then he determined the

deflections of both strips in terms of Pa and Pb' and equated the two expres-

sions. From this equation, in combination with the equation p = Pa + Pb, he

was able to determine Pa and Pb- This leads tothe coefficients q i (i = a,b)

such that:

Pa = q aP (4-13)

Pb = nbP (4-14)

Having Pa and Pb, Marcus treated each strip as a beam in the usual manner

to find the stresses and deflections. This method gives good agreement

with test results and other theories of plates which could be checked.

We can use the same approach here for curved, simply supported,

"very thin" webs, loaded laterally with internal pressure. The only differ-

ence will be in the configuration of the selected strips. Figure 85 shows

two central strips under partial loadings Pa and Pb" Each strip, however,

will be represented not as a beam but as a catenary. AxiaI extensibility and

membrane-type of stresses will be considered.
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I
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Figure 85. Curved "Very Thin" Plate, Simply Supported on

All Four Sides

In the b direction, the catenary will be without initial deflection and

will be loaded with the normal pressure loading Pb. In the a direction, the

catenary will be loaded radially with the partial loading Pa and will be

initially of circular shape. Dotted lines show the assumed deflections due

to the loadings Pa and Pb" The deflection may be determined for each

catenary. The extensibility of the material must be considered. Central

deflections can be equalized, and this leads to the determination of Pa and Pb"

Then, using the usual approach, the tensile stress in each catenary may be

specified.

The derivation is rather simple, but proof will not be presented for

justification of this approach, as there is no other existing procedure for

comparison.

However, we can make a comparison for the special case of a rec-

tangular flat membrane (R = co) using F_ppl's procedure.

Square Plate

For a square plate, a = b, Pa = Pb = 0. 5 p. The tension in the catenary

of unit width is given as:

22H = 0.347 AE Pa a (4-15)
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Deflection:

M
y - H _ where M =

y

the moment in the middle of the span of the

catenary.
2

Pa a
M ---

8

2
Pa a

Z2(8)0.347 AE Pa a

2
Pa a

2 22.78 AE Pa a

(4-16)

(4-17)

Rectangular Plate

The system is shown in Figure 86 .

P = LOADING

t = THICKNESS

l
b

J
Figure 86. Rectangular Plate

Pa + Pb = p (4-18)

2
Pa a

M -
a 8

(4-19)

pb b2

8 (4-20)
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Deflections:

2

M a Pa a

Ya H 8H
a a

M b Pb b2

Yb -
H b 8H b

where H a and H b are internal tensions in a and b directions.

developed catenary theory, these values are found to be:

2 2H = 0. 347 AE pa aa

(4-21)

(4-22)

From the

(4-23)

zzH b = 0.347 AE pb b
(4-24)

Deflections of both catenaries must be equal.

Ya = Yb

Paa 2 pb b2

2 2 (0.347) 8_AE 2 2(0. 347) 8 _/AE Paa Pb b

If Equation 4-18 is considered together with Equation 4-26,

the following results:

Pa = _] ap and Pb = _ b p

(4-25)

(4-26)

it will lead to

(4-27)

whe re

b 4 4a

rl = and qb = 4+b4a a4+b 4 a

These results are the same as for a "thin plate" determined by

Marcus, except that, in this case, Pa and Pb apply to the catenaries.

(4-28)
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To demonstrate ranges of representative values for q a and Tlb,
Table 3 was prepared for a range of panel aspect ratios.

Table 3. Representative Values of qa andqb
for a Range of Panel Aspect Ratios

Panel Aspect Ratios, a/b

l, l, 1.9
| I

T1 0. 5 0o408 0° 3_5 0o 260 0.220 0. 165 0o 133 0. 108 0° 088 0. 070
a

11b 0. 5 0.592 0.675 0.740 0.798 0.835 0.867 0.892 0.912 0.930

Then:

2.0

0. 059

0. 941

H = 0.347_AE 2 2 _ 2 2a pa a and H b = 0.347 AE pb b

The tensile stresses are:

0- --'m

a

Deflection:

Ha/A and :b = Hb/A

(4-29)

(4-30)

Y

2
Paa Pb b2

8Ha 8H b
(4-31)

Results of the above derivation are compared with F_ppl's theory for

several(50) examples (Figure 87). The ratios of the sides of the flat plates
are chosed between 0.75 to 1. 50.

Figure 30 shows the comparison of the FSppl theory with test results.

We can see that the FSppl theory leads to results which are about 20 percent

higher for pressure loading from 0 to 20 psi.

The results obtained with the catenary method are lower than FDppl's

results and correspondingly closer to the test results. Comparison (FSppl's

theory versus catenary approach) graphs for deflection and stresses a
andcb are given in Figure 87. This comparison gives us some confidence

that the approach leads to reasonable results. After this conclusion, we

proceed to the curved "very thin" plate.
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Curved Plate

Reference is made to Figure 85 and the corresponding discussion

given with this figure. For the strip in the b direction, we have the formula

for deflection. For the a direction, such a formula may be derived. In

connection with Figure 88, the following nomenclature is used:

S ..

h =

p =

J[ =

R =

initial length of catenary

initial deflection of the catenary

loading on catenary

span between the supports

radius

!
h =h-+8

Figure 88. Catenary Loaded Radially

Due to the loading, p, the catenary will deflect an additional distance, 6, and

initial length S will be increased by AS.

pRS S' = S + AS (4-32)
AS - EA '

The value of h will be increased to h'. The following geometric relation is

known between S', h', and _:

16 h,2 (4-33)s' = Iz+- -
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From this formula, h' can be determined:

h' = 0.433_S') 2 -

Actual deflection is:

2
J_ (4-34)

5 = h' - h (4-35)

where h = R - d

d = ___R 2_ _2 (4-36)

Finally:

6= 0.433 S+ EA/ -'_ + R - -R (4-37)

The shorter radius, r<R, corresponds to the deflected shape and must

be determined in order to find stresses in the deformed catenary. Figure 89

shows the relation of deformed catenary shape with respect to undeformed.

S l "--

(o, o)

r R

(2'

(o,R) _ /

8

""--(o,R+8)

Figure 89. Relationship Between the Deformed and the Undeformed

Catenary
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The equation of the deformed shape is assumed to be:

Also r = R + 5- b

Designate R + 5 = u.
J

The coordinates of the point (4,

the Equation 4-38.

2 )2 2x +(y-b = r

R cos ¢I

(4-38)

can now be used in connection with

From this equation can be determined:

b i

2 p 122 R 2U - C._S
2 4

= (u- b)2 (4-39)

(4-40)

Cons equentl7

r = u

z R2 zz
u - cos -_- 4

Z (u-Rcos-_-)

, _°= 180°. R (4-41)

The new tension in the catenary will be:

H

H = pr or ¢ = A (4-42)

The solution of the problem can now be attempted. Assume the internal

pressure to be p. The unknown loading which is prescribed for b direction is

Pb" The unknown loading which is defined for a direction is Pa" Then the
maximum deflection for the central strip in the b direction is:

pb b2

Yb = 2 2
2.78 _ A E pbb

(4-43)
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Maximum deflection of strip a:

Ya =

where a -- s,

Necessary condition,

0.433_

Yb = Ya

pa R a_2 _ 12 ' _ 12+-N4 _

pb b2

2 22.78 AE pb b

+ ___4R 2_£2_ R

(4-45)

Also Pa = P-Pb

This leads to:

pb b2

222.78 AE pb b

0. 433 + EA j.
-R

(4-46)

where

o

b = 2R sin--
2

a

po = 18o o%-f

Equation 4-46, however, is not easily solved, because of the large

numbers and small differences involved. Consequently, it would be difficult

to obtain with the slide rule a solution as a result of trial and error process.

For this purpose, however, a FORTRAN program is added in the appendix

which automatically leads to the required solution.

The input:

a = length of curved side, in.

b = length of straight side, in.
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R = radius of curvature, in.

E = Young's modulus, psi.

t -- thickness, in.

p = total loading, lb.

The output will be:

Pb = partial loading assigned to b direction

From the above equation, Pb can be determined.
we can perform calculation of both catenaries:

Yb

pb b2

2 22.78 AE pb b

Having Pb = rlbP'

(4-47)

_/ 2 2H b = 0.347 AE pb b (4-48)

whe re

S
_° = 180°.rr_

Ha -- Iu 2 R2 2 t_ 12

_u - cos 2 4

Pa {2 u- R cos --_
2

(4-49)

u = R+6

Pa

Finally

= P-Pb

b

H b H_ a

A' ffa A
(4-50)
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This state of stress is shown in Figure 90 and represents the membrane

stresses due to internal pressurization at the middle-point of the plate, in

the prebuckling stage. There is no theory nor test results at this time with

which we can compare the derived approach. However, since this approach

was satisfactory for the special case at R =co, we willassume that the

results also are satisfactory for R _ m.

b

Figure 90. Stresses in Prebuckled Web Due to Internal Pressure

- 166-

SID 66-135



NORTH AMERICAN AVIATION, INC, SPACE and INFORMATION SYSTEMS DIVISION

LATERAL LOADING - EXTERNAL PRESSURE

Under external lateral-pressure loading on the curved panel, it will

be assumed that lateral loading is acting in the inward radial direction

toward the center of curvature. Only uniformly distributed loading will

be considered.

It can be noted that this problem is different from the previous

problem because the strip through the center of the web panel, oriented

parallel with the flanges, is curved and obviously stressed in compression.

The orthogonal strip, which is parallel to the uprights, is still stressed

in tension and does not differ from the previous case for internal pressure.

The preceding discussion also applies here: The curved plate cannot

be treated exactly as a cylinder.

Prebuckling stage

Assuming that the modulii of elasticity for tension and compression

are approximately equal, we may conclude that the behavior of the plate

will be similar to the previous case. Consequently, in the prebuckling

stage we will assume the same distribution coefficients _i as in the case

of internal pressurization. The only difference will be that the curved

strip will be stressed in compression, but the orthogonal straight strip,

as before, will be stressed in tension. Consequently, Equation 4-46 will

apply for determination of the partial loadings, Pa and Pb" The stresses

will be numerically equal to the previously established stresses, except for

the curved strip, where the stress will be compression (negative sign):

Ha Ha (4-51)
era = ---_- , (rb = +--_-

Buckling

The critical external pressure which will cause buckling of a cylin-

drical surface can be assumed, with reasonable accuracy, to be approxi-

mately equal to that critical external pressure, derived by yon Mises

(Reference 38), which is:

[ nl Z -_
p° _ (n2_i) (n_ Z-z + +cr 3 (m21) n2-1

a 1 + -- +t--t-

\'na / j (4-52)
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This formula is not very practical because of complexity and the number

of required algebraic manipulations. Since usage of this formula appears

impractical, no further usage will be made of it at present. Instead, a

much simpler formula (4-53) can be recommended. It results in solutions

in good agreement with the above formula of yon Mises.

where

-2u Et2_R

P'cr = 3 #-6 (i-_2) 3/4--d_ (4-53)

P ° = critical external pressurization
cr

= Poisson's ratio

E = modulus of elasticity,psi

t = thickness of the wall, in.

d = length of upright, in.

R = radius of curvature, in.

with _ = 0.3, the equation reduces to:

, psi

Et 2 tVE--o

=- 0.92 t/-_-
Pcr _K

(4-54)

Up to this level, stresses in the web are still determinable by the method

described for the prebuckling stage.

Postbuckling Stage

After buckling occurs, complete collapse of the sheet does not occur,

but the model will be changed. When panels buckle, which are relatively long

in the curved (or circumferential) direction, the strips oriented longitudi-

nally(or inthe direction of theuprights) will support most of the pressure

loading. The relatively longer curved lateral strips are much more flexible

due to both added length and curvature.

In the case of the web panel short in the circumferential direction and

long in the longitudinal direction, the short curved elements will buckle into

reversed curvature and support most of the external pressure load by

tension in the elements.
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In the usual practical case, these two extremes will seldom occur.

There will be some distribution of loading between the orthogonal strips

depending on such parameters as web panel aspect ratio, curvature,

R/t, etc.

Consequently, depending on the ratio of the sides of the curved sheet,

a/b, two possibilities exist. One possibility holds that the ratio of sides

of the plate is such that the strip, b, cannot develop a deflection of the

magnitude to permit the strip, a, to take the new (reversed) shape of

catenary, v,hich is stressed in tension. In this case, the ::,hole loading,

after buckling occurs, will be carried by the set of strips in the b direction,

and will be carried exclusively to the flanges. In the absence of a more

accurate study of this local phenomenon, it is assumed that the total loading

will be taken by strips b and transferred to the flanges, and the distribution

will follow a triangular or trapezoidal shape. The other possibility is that

the new interaction of two catenaries may be calculated in the manner given

for internal-pressure lateral loading of curved webs.

COMBINED VERTICAL AND LATERAL LOADING

Separate applications of vertical and lateral pressure loadings have

been previously discussed. In this section, the interaction effects due to

combined simultaneous loading will be studied. Simultaneous loadings

primarily affect the web.

Super imposition

In the prebuckling stage, stresses throughout the beam will be well

below yield stresses. Thus, stresses caused by vertical loading and

lateral pressure may be superimposed by algebraic addition for all ele-

ments of the beam.

This approximation should be fairly good. Thin plate deflections are

usually not linear, but deviations from linearity in the case of aluminum

(Reference 19, page 2-91) for relatively low loading are not significant (Fig-

ure 30). Since web stresses are caused by both vertical and pressure loadings,

it seems reasonable to superimpose these stresses. The procedure may be

applied in the same manner as for flat webs, as described in Section Ill.

Compressive web stress in the diagonal direction may be found from

o- I : o-c + .°1 (4-s5)

where_ c is the compressive stress due to vertical loading

(l J:I t1:1"I)'
169 -

SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

and lCYH results from lateral pressure loading. For example, assume

that horizontal and vertical stresses are o- a and _b respectively, found

by the procedure for lateral loading - external pressure.

HO-1 o" Cos 2= a a + crb Sin2a (4-56)

For _ = 45 degrees, Equation 4-56 will be

_a + ab

Ho-I = 0.5 o"a + 0.5o- b - (4-57)
2

Similarly, tensile stress in the diagonal direction, o-ii may be

defined by

o'iI = o"t + HO'2 (4-58)

where or t is the tensile stress due to vertical loading, and 2O'H is the stress

in the same direction (45 degrees) due to lateral pressure loadings, deter-

mined in a similar fashion to lO'H, using the same formulas but using the

complementary angle.

The web-buckling phenomenon divides the prebuckling and post-

buckling phases. Figure 91 illustrates o"I versus T for superimposed

vertical and lateral pressure loading, showing the effects of internal and

external pressure on buckling. The prediction of web buckling under

combined loading may be made with an interaction formula from Refer-

ence 39, (Equation 4-59 in the following postbuckling discussion). At

buckling, the analytical structural model changes to a set of catenaries

as in the noncurved web case. The presence of internal pressure will

postpone web buckling, while external pressure will decrease web stability

and therefore hasten buckling. The external lateral pressure case involves

a more complex buckling system due to the additional "snap-through"

buckling caused by the direction of the pressure. This buckling phenome-

non is shown in Figure 91, diagram B as the first perturbation as T
increases.

There are two possible buckling sequences for the combined-loading,

external-pressure case. In one case (Figure 91, diagram B), the curved

web snap-through due to pressure will occur before critical shear loadT'
cr

is reached. After snap-through, the curved web has reversed curva-

ture. After this happens, the curved web will become a web stressed in

tension and will follow the usual path, until z*occurs. Then the shear load

will tend to pull the web panel into a flat configuration, while lateral pres-

sure will be taken by set of prestressed catenaries.
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G C

• -rc r

"7"*

POSTPONED BUCKLING
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_" LATERAL PRESSURE

EFFECT

A. Internal Pressure

FIRST BUCI<LING PHENOMENON

SECOND BUCKLING PHENOMENON

,,\\\\\\\\ \\\ \\

PRESSURE EFFECT

_ _ LATER!L_= "_'C r

B. External Pressure

Figure 91. Effect of Pressure on Curved Web Shear Buclding

(Sheet 1 of 2)
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In the second case (Figure 91, diagram C), shear buckling,_'
cr'

diagonal-tension elements occurs prior to the pressure load causing

snap-through or pressure buckling.

0

Figure 91.

into

At the time of buckling, the web tends

T'Icr

"_---SECOND BUCKLING PHENOMENON

\\\\ \\\\\\\\

\ "\\\ \'. ,'\ \ \\\"._,

7"cr -- I

SIMULTANEOUS LY

C. Shear Buckle Before "Snap Through"

Effect of Pressure on Curved Web Shear Buckling (Sheet Z of 2)

to pull into a flat plane, and external pressure then tends to induce reverse

curvature in the buckled plate. Pressure buckling or snap-through occurs

simultaneously with the diagonal-tension buckle. It is expected that a

relatively large shear deflection will occur at web buckling due to the curved

diagonal tension elements straightening out.

In both cases, as can be seen from Figure 91 the behavior of externally

pressurized webs after snap-through occurs is similar to the behavior of

internally pressurized webs. The change of curvature makes the web

internally pressurized. If the horizontal dimension is larger than the vertical

dimension, snap-through buckling may not occur at all.

For the postbuckling regime, the structural model of the web changes

to diagonal-tension elements. Lateral pressure is assumed to raise the

tensile stress in these elements (because the whole load will be taken by

tensile elements in one direction) without affecting the orthogonal compressive

stresses.

Determination of Final Critical Buckling Combination

Combined-loading buckling may be predicted through the use of the

following equation (References 37 and 38):

Tcr / + o - I
Pcr
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where rcr is found as explained in this Section (See Web-Buckling Phenomenon)

and p is the applied lateral pressure with a positive sign for internal pressure

and negative sign for external pressure.

0

The value of p cr (an external pressure with negative sign value)
remains to be found to enable use of the equation to predict T*. A method

O

of calculating pcr is described under Lateral Loading - External Pressure.

The derivation of the method is based on lateral pressure only, with no

longitudinal load. A pressurized cylinder may have longitudinal shell

stresses due to pressure on the bulkheads. In this study, however, no

effort is made to define these effects. It is assumed that the curved beams

under study have no pressure-induced stress components in the axial

(vertical) direction.

It may be noted that Equation 4-59 permits the determination of

critical stresses without the necessity of using superimposition, as

described in Section II and used for straight beams. This simplifies the

combined-loading analysis procedure considerably.

Postbuc kling Stage

As in the case of the straight beam, it will be assumed that the

compressive stress in the web increases with shear loading up to the

buckling load, and then stays approximately constant (the increase is

small) as the diagonal-tension elements are stressed with higher loading

(Figure 42). The principal compressive stress in this case increases

slowly under postbuckling conditions. Equation 4-8 defines the contribution of

vertical loading. The contribution of the lateral loading will be HOrl '"
Finally, the compressive stress will be

where k

o-I = - To(l-k ) sin 2a +HO'l (4-60)

is a function of TO /rcr obtainable from Figure 80.

The tensile stress due to vertical loading is:

.¢
k T

.u

-i- O "-

2-_+ H o-" (4-61)
o"1 = r (l-k) +

II o sin 2

where T O is a fictitious shear due to total vertical loading, if buckling were

prevented; To = P/dt, where d is the height of the web. The tension stress

in the diagonal element consists of two components, one due to applied shear

load on the web panel, and another due to lateral pressure. The contribution
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due to lateral loading which carries over from the prebuckling stage is

H_2 *" The stressHCrZ ' results from that part of the lateral pressure

loading applied up to buckling, p'. The remainder of the lateral loading is

caused by pressure component

p" = p - p' (4-62)

This load is reacted by the diagonal strips of the postbuckled model.

Consequently, each catenary will be:

1. Loaded with p" while initially prestressed with 0rII = cr t + HcrZ

2. Deflected an amount, y, due to lateral pressure loading, p'

In Section III, methods of analyzing the catenaries are defined,

direct formulas are given, and FORTRAN solutions are provided for

more complex problems. The results in either case will include the

required tensile stress, o-ii {fill =H/A), and the deflection, y.

The resulting stress, 0"ii , must be less then the ultimate stress, O'tu,

where Crtu includes stress concentration effects of web-upright and web-

flange attachments.
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SEQUENCE OF LOADING APPLICATION

A study of the interaction between vertical and lateral pressure loading

leads to the fundamental conclusion that, due to the presence of lateral

loading, the buckling of flat web may be postponed until higher shear loads

are applied.

When combined loading reaches the buckling level, the structural

analytical model changes, and loading beyond this level will be taken by a

different structural model. The new model is represented by a diagonal set
of catenaries.

Before buckling occurs, the loads are resisted by plate-action, which

is a two-dimensional system. The plate resists the loading by in-plane

two-directional stresses and, due to the loading, is stressed and strained

in shear. After buckling occurs, the system immediately changes into a

one-dimensional system, a set of catenaries, which then continues to take

the rest of the loading (small additional compression in the postbuckling

stage due to vertical loading is not significant). Generally, the catenaries

are more flexible than the plate, as they are stressed in only one direction.

Lateral deflections will therefore be larger.

Consequently, the following conclusion can be made: after buckling

occurs, compression (in the diagonal direction) will not continue to increase

significantly (Wagner even recommends that this increase be disregarded).

The tension (in the diagonal direction) will continue to increase, faster than

in the prebuckling stage. Deflection due to the lateral loading also will

increase faster, because the system is one-dimensional.

This leads to the conclusion that the rate of increase of stresses and

deformations will be generally changed at the buckling level. The total

loading at the buckling level may be divided into two components: the first

part resisted by plate-shearing stress (prebuckling stage) and the second

part resisted by catenary action (postbuckling stage).

It has been demonstrated that the amount of lateral loading influences

the buckling level. With additional internal pressure, the buckling shear

level will be raised. Buckling will occur later, and consequently less load

remains to be taken by the catenary system.
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OUTLINE OF CURVED WEB ANALYSIS PROCEDURE

The procedures discussed in this section follow the approach that was

taken for the analysis of straight beams. The first procedure discussed is

the analysis of curved beams which assumes that the prebuckling principal

compression stresses are "frozen" for the analysis of postbuckling behavior.

This procedure is presented as background information.

The recommended procedure is not dependent on the assumption of

frozen stresses for the lateral-pressure loadings. It is assumed that all of

the postbuckling pressure loads are taken by the catenaries. The analysis

depends only on the final shears and pressures. The law of conservation of

energy vigorously holds for the nonlinear analysis.

First Procedure

Assume a partial-tension-field beam system loaded with vertical

loading, go, and internal pressure loading, Po. The beam geometric data,

material properties, and static load systems are known. In any section of

the beam, we can determine bending moment, torsional moment, and shear.

Only shear will be required for web analysis.

i. The first step will be to determine the following:

TrgEh Z
T = K (Equation 4- 3)

cr s IZRZZZ

pO = -0 9Z Et2 _] t (4-63)
cr " dR _ R

T o

S

-- %

Now itis possible to determine whether the web are in the prebuckling

or the postbuckling stage. The critical combination (T _'", p_':")is selected

under which we prefer to have the web buckled. Initial application of internal

pressure, p, postpones buckling. So, one way to determine buckling phase

would be to enter into the interaction equation the whole Po or any p_:=_- Po at

which we would prefer to have the web buckled (See Equation 4-59)

_2 ;:"
+ P_____ : 1

o

Pcr

(4-64)
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From this equation T* will be determined.

If T* < TO, the web is in the postbuckling range.

If T* > TO, the web is in the prebuckling range.

It may be that we want to have the web buckled at certain T * < T o .

From the interaction equation, we can determine the corresponding p*.

If p_' < Po, the web is in the postbuckling range.

If p -> Po, the web is in the prebuckling range.

Consequently, both methods give the critical combination (T":", p"")

under which the web buckles, and the change in the system occurs.

If the prebuckling stage governs, then, from Equation 4-46, Pb
determined.

will be

Then, determine:

H b using Equation 4-48

H using Equation 4-49
a

using Equation 4-50
a

Cb using Equation 4-50

Finally, determine _-T°-

deflection then is given b_ *

and H¢Z with Equation 4-56.

2

Pb b

3 Z Z
Z. 78 _AEPbb

The lateral

(4-64}

The compression stress in diagonal direction is given by

= O" ÷HO'IO'I c (4-65)

The tension stress is given by

OrlI= or +
(4-60)
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Thus,

leads

Then

the state of stress in the web is determined by (ffa, orb, to).

If, however, the postbuckling range governs, then the following method

to the required results.

;:." ;:..

Using p in connection with Equation 4-46, determine Pb
determine

H b using Equation 4-48

H using Equation 4-49.
a

_"_!°'a using Equation 4-50.

Now, using Equation 4-56, the "frozen stresses" can be determined.

H°"_ and H°2i

Then we are dealing with the changed model which is not curved any

more but is a set of pretensioned catenaries.

Vo/TCr leads to determination of k_:'with Figure 80 and the graph in

Figure 81 leads to determination of angle aPDr ' which will be modified.

The final compression stress then is determined with the formula

o- = -T (l-k )sin Z o_+ o-_:" (4-67)
I o H 1

The tension component o-ii is determined with the FO1KTKAN program

or with the corresponding formula for the pretensioned catenary. The length

of this catenary is slightly increased due to straightening effect, as described

in this Section under "Postbuckling Stage." The prestressing is H o= ffitxlx t

where

2 k T ;:_
o

or , = + T (l-k;:") sin 2 of+ 0-Z (4-68)II o H
sin Zot

The initial deflection is

Pb b 2

2.78 { aEPb2b Z
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The output of the program is

Tension Stress,¢ii, (actually H = o-iiA )

Final lateral deflection, y.

A "flow-diagram" (Figure 9Z ) illustrates the method.

This concludes the determination of stresses and deflections in the web

of a curved beam, which is loaded simultaneously with vertical loads and

lateral pressure. The resulting solution is unique and independent of the path

of loading. If the results are found to be dependent on the sequence of loading,

it is because of the assumption of "frozen" stresses.

The analysis will not be very different if external pressure instead of

internal pressure is involved.

Some modifications are required as shown in the section on Lateral

Loading - External Pressure, page 167.

Recommended Procedure

In Section HI, it was stated it may be necessary to revise the

assumption of the frozen state of stresses that remains after the buckling

occurs. The same philosophy can be applied here too.

The governing principle now is that after final buckling occurs, the

whole lateral loading will be taken by the set of the catenaries. Then the

system will be perfectly conservative, and the results will not depend on the

path. It will also eliminate the necessity for determination of the critical

combination ( r ='", p;").

The revised procedure then will be outlined as follows:

a. Determine as before

T using Equation 4-3
cr

o

Pcr using Equation 4-54

, using Equation 4-1
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b, As before, determine if the web is in a prebuckling or postbuckling

range. Prebuckling range may be extended by application of

more lateral loading. Consequently, any p* <po can be selected

under which it is desirable to get the web buckled. This selected

value of p* will be entered into the equation of interaction:

+_
o

\ cr/ Pcr

= 1 (Equation 4-59)

From this equation T* will be determined. If T':-"< T O iS obtained,

the web is in the postbuckling range. If v* >_ T O iS obtained, the web is in

the prebuckling range.

c. If in the prebuckling range, determine the loading Pb and Pa using
Equation 4-46. Then find:

H b using Equation 4-48

H using Equation 4-49.
a

0-b and Ca using Equation 4-50

Now the state of the stresses is given by

(°-b' _a' TO)

and the horizontal deflection

Pb b2

3 2 Z

2.78 _AEPbb

(Equation 4-64)

d. If in the postbuckling stage, proceed as follows: determine ratio

To/Tcr and find the corresponding k using Figure 80. Then,

with Figure 8 1 determine a PDT. This value should be slightly

modified, considering curvature.

Then, the final compressive stress is or I = -To (l-k) Sin 2ex (in

diagonal direction). The tension stress is determined from the FORTRAN
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program or corresponding formulas.

Prestressing Ho =°'II' x 1 x t

where

The input will be:

2kT
o

II' - sin Z_ + TO (l-k) sin Za (Equation 4-9)

Initial deflection 8 = o

Loading on catenary is total Po"

The length of catenary shall be diagonal length in accordance with the

angle _ and modified due to straightening of the fiber as is shown inthe

beginning of this section.

The output will be:

H = ¢riiA _ final tensional stress in diagonal direction

y = lateral deflection

For better illustration of this procedure a flow diagram is included.
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SUMMARY

First Procedure

The first step will be to determine Tcr (Equation 4-3) and Pcr

(Equation 4-54).

i ] pThenlTol = _ =I °-cl= t

Substitute Po = p in Equation 4-59

o

\cr/ Pcr

To calculate the associated T .

- 1

Ifr < T , the web is in the postbuckling range.
o

If T >_ T , the web is in the prebuckling range.
o

_,,_

Alternately, substitute r = r and determine the associated p
o

If p < Po' the web is in the postbuckling range•

If p >_ Po' the web is in the prebuckling range•

For prebuckling phase, calculate

Pb

H b

H
a

Equation 4-46

Equation 4-48

Equation 4-49

Equation 4-50

1¢h' 2¢h Equation 4-56
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Z
b

Pb
6-

2 b 22.78 AE Pb

o-i=_ +c H°-I

_II = _t +H °'Z

For the postbuckling phase, calculate

Pb and Pa

H b

H
a

o- o_
a' b

H_I ' H_Z

k

aPDT' _

_-I= - T (l-k)sinZa +H _o 1

Equation 4-46

Equation 4-48

Equation 4-49

Equation 4-50

Equation 4- 56

Equation 4- 10

Figure 81

The tension stress ¢ will be determined with the aid of the
I I

FORTRAN program [or analyzing catenaries:

z Zk r _. ,

________o + T (l-k') sin2_ + HO-2¢II - sin 2 a o

!

Ho = o-ii x i" x t"

Initial deflection,

* b 2
* Pb

5 -

_/ * 2b22.78 AE (Pb)
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FORTRAN program output will be the tension stress Crll

H = GIIA )and deflection y (see flow diagram, Figure 92).

Recommended Procedure

(actually

The analytical procedure follows:

Determine

T Equation 4-3
cr

O

Pcr Equation 4- 54

Define buckling phase, pre-or postbuckling. _As in the procedure,

internal pressure increases buckling load. {See Equation 4-59. )

(; +pIo
\ cr/ Pcr

If Po is substituted for p , an associated T is found.

If r"
0

the web is in the postbuckling phase.

If r ':=> ro, the web is in the prebuckling phase.

If in the prebuckling range of loading, determine Pa and Pb using

Equation 4-46.

Then find:

H Equation 4-48
b

H Equation 4-49
a

and _b Equation 4-50a

The state of stress in the web is defined by 0 ,
a

maximum lateral deflection is
_b' and TO, and
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cURvED BEAM PARAMETERS

I. Geometr_
AFL d
A u h
R t

2.M=ter_ot Pr®mt_es

E _ E;t_
,= _t=

3. Lo_d_m9
Ve,ticat,90
Laterat , Po

4.Derived Loads

Bendin 9 moment 1 MS
Torsional moment _ PV_r

Web shear, _'o

BUCKLING CRITERIA TO DEFINI

LComlxde •

P_--o.gz -_ v-_

2. Substitute above vatues oral p=

t%_l P_

If1_*< T._, web iS in t_ebuckhn
If ">--'_o, web is in postbucklil

OR

b) Substitute _.=_'in e_u_tLo.
If p > IOo,uJebis_nprebuckL

Ifp_ po,u, ebis i. posLb_ck_

BUCKLED STAGE
l

#

2.78 _AE p_2b=

Find

DETERMINE " FROZEN" COMPONENT

- O.433 -_.,- (P'_I_)Ra]: Rz'

I _/'4Rz- _='•=_- -R

H *= 0.347 "V'AEp_Z bz"b
z /3 ,_z

u2-R cos2 _--_- 1H_=p_ u- 2(_-Rcos .__)llj

p:= ¢-p¢

where _" = IBO_R

u = R* _;"

_;.= pI b2
2.78 VAE P_b"

E;b, = H_*

H_

K 2 tl" _ ÷ 4''2 _ _X)

CAL(

E

H
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=,

LOADING

}o in:

IETERMINE k ,o_

J. k ...... from Figure 80
2. cx _'rom Figure 81

PREBUCIdLING STAGE

'ULATE _, , Ho

z" Sin Zqx +'C,(l'k*

DETERMINE Gx ,_z

2.ZB AEb"
" ½_/4R'-_z"-R

Find Hb= 0.347 "_/AE-PI_ b_'

Pa" P'Pb

where /30= I_0 S__S
lIl_

Pb b2

_; : 2.7&_
Hb

I-t:
_: _-

Gz" Gc + G_cos2_+Gusinz_

CALCULATE _x@x"-T._(I-W*)+ _'T_+ _*
Si__ H'+',t

(u(,

I OBT^iN _']I, _J
H

_n =

J 9, d_l:le,r.li_

Figure OZ. Curved Web Ax_lysis Flow Diagram With _'Frozen Compressive

Stre Ss" Considere_ (Background_
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Pb b2

6= _ 2b22.78 AE Pb

If in the postbuckling range, determine

k Figure 80

°PDT '_ Figure 81

_I = - To (l-k) sin 2a (Diagonal Compression)

0-

II
obtainable by FORTRAN Program or formulas:

, 2k r
0

(i) _II- sin2e + TO (l-k) sin2_

!

(2) Ho = _II x I" x t

(3) Initial deflection, 6 : 0, loading, Po, and initial length of

catenary, @2r 2 fronq Equations 4-5, 4-7.

(4) Output of program or formulas is; o H : final tension stress

in catenary; y = maximum lateral deflection

A flow diagram summarizes this procedure (Figure 93).
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CURVED BENvl PARAMETERS

I. Geometr_l
ArL d
A u h
R t

2. Material Properties

3. LoadLn9
Vert;icai 9o

Lafercd , P=

4.Derived Loads

Bendin 9 moment ,M 8
Torsional moment , M_
Web she_r ,'Eo

BUCKLING CRITERIA TO DEFINE LOADING

I.Compute "
l_cr = ks l,ltZE h2

12 RzZ =

o EtZ_/_ '
P;.r- -o.gz

2. Substitute above values attd p-po "into:

•_ mlz Po = I

If "l__< _,_ web is in prelouckli.9 St=ge.
If""Ei>___o,web is in pos_buckhncjstage.

OR
b) Substitute 1_ =_C* in e_uatio.

if p > pc,, web is in prebucklinS sta_je.
if p _ p o , u=eb is in pos/bucldi_ 9 stage.

f



NORTH AMERICAN

DETERMINE _z ,6"=

Pbb2 0.4337Io +z.TS AEp:b,"-

Find
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UPRIGHTS AND FLANGES

STRUCTURAL ANALYSIS OF UPRIGHTS

The stress analysis and stability consideration of the uprights for

curved partial-tension-field beams are identical to that of straight beams

with the addition of the component of web forces acting out of the flat-plane

web system (Figure 73). The method of analysis developed in Appendix A

for the upright is general, and the out-of-plane components have been

accounted for.- The analysis of the upright reduces to that of Kuhn, with the

values for Pcr in Asy m and Aantisy m slightly modified:

1
A = (4-70)

where the critical axial upright load becomes

rrgEI
P - (4-7])

cr L 2
e

where

Note:

d
L = (4-72)

e _]1+ k,2(3 _ __h_h)

Valid for h<l.5d; for h>l.5d, L e = d.

[( t)k* = tanh O. 5 + 300 log _-
cr

(4-73)

With

lo

2.

If d<h, replace d/h by h/d.

If h/d(or d/h) is larger than 2, use 2 (Figure 94).
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UPRI(

X

Qi

CURVED FLANGE

Figure 94. Symmetric Mode

For antisymmetrical deflection shape

1
A =
anti sym

1 --4Pcr 4-_cr\_/- ;

%

The bending stresses due to lateral load can be expressed as

(4-74)

2EI A [qo_ N _Ci]y sym + E o sin-_j°-bend = P d Z
i=l n

sym cr y

z antisym qoy
bend = ZdP Z

antisym cr z
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To this bending stress, add the compressive stress as defined in
Reference 1 ,

where A
u

(Y
C

k* cot (x

A

+ 0.5 (l-k*)
ht

is the area of upright (Figure 95).

(4-77)

A i

j_ HA X- 2/2

tPA

Figure 95. Antisymmetric Mode

To assure structural integrity of the uprights, the bending plus compressive

stresses as determined from Equations 4-75 and 4-77 for out-of-plane

upright deflection and from Equations 4-76 and 4-77 for tangent-in-plane of

web should be less than the design allowable. Furthermore, the stability

criteria as determined from Equations 4-71 through 4-73, inclusive, must

not be violated. For local stability criteria, the crippling is determined

from Equation 3-35 in SectionIII and from Equations 1-3 or 1-4 of Section I.

STRENGTH ANALYSIS OF FLANGES

The load acting on the flange (ring} due to lateral pressure is shown

in Figure 96.
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/I

/ i

.__J_

h J

J

5

,,11.---..--

..,I.-....--.-

DEFLECTED

SHAPE

d

Figure 96. Flange Load Distribution

In this study, webs with R/t>_1000 are being investigated. It is still

conceivable to have a relatively small radius. Considering the flange portion

for one panel, the reactions and bending moments are given in Figure 97.

See Reference 16. Making use of the elementary beam theory, determine the

bending stress _bend due to lateral pressure on the curved beam as

:E Mc
o- - (4-78)
bend I

whe re

c = distance from neutral axis to outer fiber, in.

I = cross-sectional moment of inertia about bending cross section,
4

in.
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To this bending stress add the compressive stress in the flange due to

diagonal tension (Reference 1 )expressed as

C_ = A kT tan _ (4- 79)
FL

-- + 0.5(I - k*)
dt

where d and _ are defined in Figure 94, and t is web thickness.

/

/

//!1// _11

DEFLECTION SHAPE

"_'q oy *" P

e _o_-_

Figure 97. Curved Flange Under Triangular Loading

A = B - p_
4

2
pt

H -
125

(4-80)

M
x

AtoG

12-- (4-81)

M
x

BtoG

(4-8Z)
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SUMMARY AND CONCLUSIONS

In this section a systematic procedure was presented for analysis of

curved, partial-tension-field beams. Curved-beam analysis follows the

straight beam procedures closely in the areas of flange and upright. Addi-

tional torsion and axial loads occur in the flange due to beam curvature, and

a radial loading component is applied to uprights due to the postbuckling

polygon shape of the curved web. These loads are accounted for in the

equations developed for straight-beam analysis.

For the webs, new curves of buckling coefficients are provided. Also,

the direction of lateral pressure (internal or external) will affect web buckling.

After buckling, the catenary model will apply as in the case of the flat webs

covered in Section III.

The sequence of a curved-beam analysis is summarized in the flow

diagram of Figures 92 and 93.

None of the proposed methods were verified with test results. The

case of external pressure requires more development and justification by a

test program. Thus, the procedures as outlined in this chapter should be

verified by a test program.
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OVERALL CONCLUSIONS AND RECOMMENDATIONS

A reasonable procedure has been developed for the analysis of straight
and curved partial-tension-field beams under combined vertical and lateral

pressure loading. The procedure is based on extensions of existing empiri-
cal and analytical data and procedures. Little test data are available which

is appiicable to this particular combined loading configuration. Therefore,

the procedures should be used with caution until confirming test data become
available.

The work performed under this contract is a step, or contribution to

development of more general partical tension field webs theory which will be

applicable to partial tension field behavior of stiffened cylindrical shell struc-

tures of boosters and other aerospace vehicles. The procedure is currently
restricted to beams loaded vertically and laterally. Use was made of com-

puter programs in order to simplify certain steps of the analysis. It is

possible to rewrite the entire procedure for digital computer solution. This

would make the whole procedure automatic.

In addition to the actual program of study the state-of-the-art documented

in domestic and foreign literature was reviewed in Section I. The following
additional areas of study are recommended:

GENERAL TEST PROGRAM

Of first importance is a general test program to check the validity of

the assumptions made in developing the procedures of this study. Interaction

effects of the two types of loading under various combinations of loading and

for various structural geometries are of primary interest.

The effect on k, the diagonal tension factor, of various combinations of

loading can be investigated to provide further understanding of the diagonal

tension phenomenon. This factor is probably affected by combinations of

loading as well as geometric factors.

APPLICATION T:) CURVED BEAMS

The above general program should be applied separately to curved beams.

Concurrent analytical effort and testing is desirable due to the mutual support

required on each area by the other. Analytical predictions require validation
by test programs.
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BIAXIAL COMPRESSION IN WEBS

Under certain loading conditions, particularly with flexible flanges or

uprights, biaxial compression exists in the webs. It appears that no work

has been done in this area.

DEEP OR "HIGH" PARTIAL-TENSION-FIELD BEAMS

Unusual geometry such as a very deep beam changes the web boundary

conditions sufficiently that further study is required to define stress

distributions.

Intrapanel auxiliary uprights and flanges provide a parametric approach

to designing optimum beams. Uprights or flanges may be either continuous

or discontinuous.

All combinations of loading require analytical investigation with con-

current tests performed to check assumptions used in the development and

validity of the final equations.

The deep, curved-beam configuration differs sufficiently from the

straight beam that a separate analysis and test program is justified. Included

in this area is the investigation of curved beams as elements of cylinders

and conical sections. Longitudinal stresses induced by pressure against the

ends of a closed cylinder (bulkhead effect) require investigation.

a. Deep or "High" Beam b. Unpressurized c. Pressurized

Liquid Tank Cylinder
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PLASTIC BEHAVIOR

At high web loadings, where tension-field beams are most efficient

structurally, the material will usually be well within the plasticity range.

The effect of combined loading should be investigated. Considering the

state of the art in plasticity, this program should have most of the emphasis
placed on strain instrumentation and testing.

FORCED-CRIPPLING OF STIFFENERS

Flange and upright considerations are of fundamental importance in

optimum weight beam analyses. Forced crippling appears to be the most

important failure mode. Unfortunately, a forced-crippling theory is not

generally established. A comprehensive study of forced crippling of

stiffeners attached to buckled sheets should result in lighter weight structures.

LOAD CARRYING FRAMES IN BUCKLED WEBS

It is expected that further study in this area should yield better analysis
techniques and lighter structures.
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APPENDIX A

DERIVA TION

The upright (Figure 57) can be analyzed as a beam column with the

Fourier series method of analysis. Normally, the external forces acting on

the upright are conservative. The principle of stationary potential energy

can be applied to establish the coefficients in the Fourier series for the

deflection of the upright. The condition for termwise differentiation of the

Fourier series must not be violated. The deflection function then can be

expressed as

co
n_x

y = _ b n sin-- (A1)
n= 1 h

where

b n = any arbitrary coefficient

n = an integer

:_ h = the upright height, inches

For a simple support system, the boundary conditions are defined by

y=0at [x=ox=h

dZy [x = oEl_ = 0 at
dx 2 x=h

(A2)

where

E = modulus of elasticity of upright material, psi

I = cross-sectional moment of inertia of upright, inches 4
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The deflection function expressed by Equation A1 is shown to be termwise

differentiable in Reference 40. The first and second derivatives of y with

respect to x are

CO

dy rr nwx
-_ h _ n bn cos h

n=l

CO

d3 2y -_ nj___x
- _ n2 bn sin h

dx2 hZ n= 1
(A3)

The expressions for the strain energy of bending, potential energy of the

inplane force p, the potential energy of the lateral loads QI, QZ, , and

the potential energy of the distributed load q(x) can be obtained directly from

Reference 41. The strain energy of the elastic foundation effect and the

potential energy of the axial effect can be obtained from Reference 9.

From Reference 41 the strain energy of bending is

ifUB = El\dxZ/
o

dx (A4)

or for constant cross-sectional area and material

U B = Z n2 bn

0 n= i

sin --

2

dx

or by expanding the equation and upon integration

_4 EI CO 2
n 4 bnUB

4h3 n= 1
(A5)

Since the integrals of the cross products resulting from squaring the series

cancel because of the relationships:

for m _ n

h h

S mTrx sin nrrx =f mTrx nrrxsin_ _dx cos 7 cos--dx : 0• h
o o
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form= n

h h

m_x n_x I m_x n_x hsin--dx = cos-- cos--dx =-
sin h h h h Z

o o

where m and n are any positive integers.

The strain energy of the web system can be determined by considering

the web system giving eiastic restraint having _ as the equivalent modulus of

foundation. The reaction of the web at any cross section of the upright is

then proportional to the deflection at that section. The lateral reaction of an

element dx of the upright is BY dx. Hence, theenergy of the elastic restraint
_.T2

for the element dx is-_dx. The total strain energy U E of the elastic

restraint can be obtained by integrating over the entire length of upright.

Hence,

(A6)

From Equations A1 and A6

U E =

2

[_hn sin nhx--] dx

or

cO

_h Z
bn (A7)

UE =-4-- n=l

The potential energy of the axial load is

ep= - PAh (A8)

where Ah = h - h I. By assuming that the upright bends without any change of

the center line length, Reference 41 indicates

dxhi = _s ds
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or

h 2

1i(dy _h =--

ZoO/
dx (A9)

The potential energy of the axial load becomes

h(."P- 2 -g z
0 n= l

dx

or

Tr P _ n2 bZn
2P - 4h

n= 1

(AIO)

From Reference 9, the potential energy of the distributed axial

compression load due to the tension in the diagonal web fold is

In_ _fnl_ _
Fo Z 2 w2

_2Fo = _ b n |- _ - 4 _E _S b n b m
=1 n=l m=l

nm (m 2 + n2)]

(m 2 _ n2 ) 2 J

(All)

whe r e

(m + n) = an even integer

m_n

F o = maximum distributed force due to net diagonal tension force

(Figure 98 )
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t

Fo

-7-
P

Figure 98. In-plane Net Diagonal Tension Force

The application of Reference 41 to the upright for the potential energy

due to lateral loads QI, QZ, Q3, and that due to some distributed load

q(x) are, respectively

n_C I _ nwC 2

tiQ = - Q1 _ b n sin QZ _ b n sin-- (AIZ)
n n= 1 h n= l h

n_C3

- Q3 _ bn sin T-
n= 1

and

h

_1q(x) = - n=E1 bn Io q(x) sin nTr-'---'_xdXh (A13)

IIas

The summation of each of the energy system gives the total potential

H = U B + U E + f_p+ _Fo +_Qn +i-lq(x) (A14)
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or

II --

CO CO CO

n4b 2p4 n2b 
4h3 n=l n=l n=l

F° [c°2 n=E1 bZ-_-n-n\ 2_2-_-/12 - - 4 n=E_COlre=E1 bn bm nm Ira2 +n2)](m2 _ n2 ) 2

+
. co nTrC 1 co nTrC z ]

Q1 :E b n sin- QZ _ b n sin • • •

n=l h n=l h

co h

q(x) sin nTr____xxdxE b n
) h

n= 1 o

(AI5)

The coefficient b n can be obtained by the condition of stationary potential

0H

energy.' Hence, fromi3b----7 = 0 we have

Tr4EI 4 bn +_ -bn TrZPnZ _'n2Tr2 II
2h------_- n - Z h bn - FO bn \- _

nm (m 2 + n Z)

+ Z F o _ bm 2 - I sin--

m= i (m z - n Z)

n_C 1

h
+ QZ sin

nwC3 t fh
+ Q3 sin_+ . . - q(x) sin nz--_Xh

o

dx= 0

nnC Z

h

(AI6)
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Solving for b n

b n =

"h

IO q(x) sin nwx dx + IQ-y- 1 sin
nTrCl mrC2 1

+ Q2 sin -- + .
h h

nrn (m 2 + n 2)
- 2 F o _ b m

m=l im 2 _ n2 ) 2

"rr4EI 4 TrZPn Z _h Fo In_Tr2 I>
_n +-- -_

2h 3 2h 2 4
(AI7)

The summation in Equation AI7 indicates that two groups of equations exist

since (m + n) is an even integer and m is not equal to n. One group has m

as an odd integer, e.g., n = 1.

lh <Q TrCl TrC2 +q(x) sin ____xxdx + I sin _ + QZ sin _ .
h h h

o

_4EI 4 2p 2 _h Fo
-- (1) -_(1) +
Zh 3 2h 2 4 (1)2_23 1]

b 1 =

Similarly n = 3 and m is an odd integer

q(x) sin3TrXdx + i sin--
h h

3_C 2

Q2 sin h + " "

3 (10) 15 (34) (21) (58) ]
2 F o bl-- + b 5 + b 7 F . .

(8) 2 (16) 2 (40) 2 ]

r_4EI(3)42h3 _2p(3)2 _h F° t(3_2_2 1>2h + 2 4

b 3 =

(Al8a)

(A18b)

- 207 -

SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

The second group consists of m as an even integer and not equal to n with

(n + m) as an even integer. Hence, for n = 2 and m as an even integer

q(x) sin 2_Xdx + 1 sin-- + Q2 sin--+ . .
h h h

- 2 Fo [b4 (8)(20)+ b6 (12)(40)+ b8 (16)(68)+ ]
(12) 2 (32) 2 (60) 2 ' . .

J

b2=

_4EI (2)4 =2p(2)2 Ph F [. ]
+- o (2)2_2 - 1 (Al9a)

2h 3 2h 2 4

and similarly for n = 4 and m as an even integer

_o <Q 4wC I 4wC 2
q(x) sin 4w____xxdx + i sin-- + Q2 sin-- + .

h h h

b4=

b 8 (20) + b6 24 (52)2 F o 2 (12) 2 (20) 2 +"

_4EI (4)4 -. + o ,4)__

2h 3 2h 2 4

(Al9b)

For a nontrivial solutionb n is not equal to zero. Thus, two systems

of equations describe the buckled upright: Equation Al8 for the symmetrical

shape and Equation AI9 for the antisymmetrical shape.

For the symmetrical mode, the deflection goes to infinity when the

denominator goes to zero. Hence, the symmetrical buckling criteria for the

upright becomes

--n_4EI 4 _2pn2 _ _h F° _n2_2 11 = 0
2h 3 2h 2 4

or

ID+--
F°h <_-_> I_ 2 1 I _2EIn2 + h2_4 n 2 = h 2 _2n2

(A20)
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The left-hand side of Equation A20 represents the loading function on the

upright and the right-hand side represents the elastic restraint of the upright-

web system. For a vertical loaded beam, Kuhn showed that Pcr is given by

Tr2EI

Pcr- (A21 )
Le 2

where L e is the effective upright length determined empirically as

h

g e =

The critical buckling load in Equation A20 can now be expressed as

_2EI n 2 h 2
Pcr = +

h 2 _2 n 2

(A22)

(A23)

which indicates that an empirical _ effect can be determined. Hence, the

governing equation used was for symmetrical buckling and that the buckling

occurs out of the plane (in the direction of the lateral load for lateral-

vertical, loaded-tension-field beams). Such a case exists when the lateral

load and/or vertical load is acting on the upright as shown in Figure 57.

Equation A23 shows the buckling takes place in the upright when

P + >- Pcr (A24)
4 2

Whenever the load acting on the upright is less than Pcr, then the upright

deflection in the direction of the lateral load is as follows:

2h

Pcr _2

_o N wC iq(x) sinW--xx dx + E O.i sin--
h i=l h

9Pcr 4Pcr

_x
sin --

h (A25)
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The maximum deflection occurs at the mid-height, i.e.,

_h
sin--= I.

2h
Hence

h
x =--such that

2

Zmax

h N

I _x _Ciq(x) sin--h- dx + _ Qi sin--
2h o i=l h

- (A26)

)1 - Pc-----_ 4Pcr -

Equation A26 was derived by only considering the first term in the deflection

function, i.e., bl. The accuracy of this approximation is indicated for

loading condition shown in Figure 54 by considering only one term. From

Equations Al8a and Al8b two equations with two unknown coefficients b I and

b 3. Consider the case for which no distributed axial compression F o exist.

Then from Equation AI7

b n ---

h N

sin n_x dxq(x) 7 4-

o i=l

Qi sin-
nTrC i

h

and

Zmax

h N

I n_xco q(x) sin_dx +

2h _ o i=l

Pcr_Z n=/_I n2 ( n2 PcrP )

n:rC i

Qi sin- h

h
where x =-

Z

Note that for n even there is no contribution towards the deflection since

nTr
sin --= 0 for n even.

2

- 210 -
SID 66-135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

The maximum deflection in the direction of the lateral load is

2h

Zma x - _r2Pcr

h N

I q(x) sin --_--dx +
o i=l

h

+Io

P
1

Pcr

Qi sin--

_C.
1

N

3_.x
q(x) sin--dx + 7. Qi sin

h i=l

3=C i

h

h

+
STYX

q(x) sin-- dx +
h

N

7..

i=l
Qi sin-

5=C i

h

+..]
For a particular case, as an example,

TFX

q(x) = qoz sin--
h

or

qoz sin _x sin n___xdx =__h for n = 1
h h 2

and

= Oforn_ 1

_C i hqoz = qoz h

Qi sin h 2 sin Z Z

and

Zmax

nlr
sin --

2h2 qoz Z
_ 7.

_2Pcr n=l n2 In g P_r)
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P
The relative accuracy of a one-term approximation for -- is as

follows: Pcr

P

Pcr

nw

z 2Pcr co sin_-

....Zh2qoz n 2 P
= P-or

z Zp
cr

Zh2qoz

, n=l only

0.987

1.00

0.2

1.237

0.4

1.653

0.6

2.487

1.250 1.667 2.500

0.6 1.0

9.986

I0.00

To study the error associated with the effect of the distributed axial com-

pression force F o, refer to Timoshenko's case (Reference 9) for which

lateral loads are not existing. Reference 9 shows that for F o only, the

critical loads with the relative accuracy of a one-term approximation for

___h> are as follows:
cr

Coefficients

bl

bl and b3

bl, b3, b5

cr

2.15

Z.06

Z.06

Error

4%

<1%

<1%

TrX

For q(x) to be approximated by qoz sin--_-as the lateral load due to lateral

pressure p acting on the tension field beam:

h h

I wx I hq°z
q(x) sin-- dx sin z_x dx = ---

h = qoz h 2
o o
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Thus, the deflection at any section along the upright is

N
qoz h TrC. 1

--+ 2 Qi sin-
2h 2 i=l h

Z --

cr 1 ....

TfX
sin

h

and the deflection is positive in the direction of the load.

upright at any section 8 becomes

qozh N _rCi
_.+ 22 Qi sin_

2 h
dz 2 i=I

_) --

1 ____P_p_ z _

Pcr \4Pcr/ -_

The slope of the

IlX
COS --

h

The bending moment at any section becomes

My = -EIy
d2z _-2EIy

dx 2 Pcr h

N
qoz h _C i

_+ i=_l Qi sin---_

P

P
cr Pc,/"7

"l'rx
sin--

h

The maximum bending stress then becomes

o-y bend -

N
qoz h 7rC i

g + E Qi sin--i=l h

Pcr 4Pcr

Iy
where Z =_ section modulus. The maximum bending stress occurs at

c

h _h

X =--_-such that sin-_= I. To this we add compressive stress of

P Foh

_comp =_+ _ and local stress of _local such that the stresses becomeA 2A

o-y = O-y bend + °-comp + °-local
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For stability consideration, note that when the denominator of the deflection

function goes to zero the deflection approaches infinity. Thus, when

(#- = 0

1 Pcr 4Pcr

or

4 \TrZ / Le 2

where

2 h Z

Ze _i + k 2 (3 - 2 hd--)

for d < 1.5 h and for d > 1.5 h, L e = h.

The lateral load distribution q(x) shown in Figure 99 can be represented

by

_x

q(x) = qoy cos--_-

The deflection function from Equations A1 and Al9a for n = 2 is

y __

h 2_x Nq(x) sin--dx + E
o h i=l

Qi sin--

2_G i

h

sin--

16 Tr2 El _2 Tr24

2h h 2 2h 2

2Trx

h

or

y __

h

8,_2Pcr

h N

_o Z_xq(x) sin -7 dx +
i=l

Qi sin-

P Foh l

4Pcr 4Pcr 8n 2

2_C i

h

l]
sin --

ZT[X

(AZV)
h
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REACTION

HORIZONTAL COMPONENT
OF DIAGONAL TENSION

(x) : LATERAL LOAD DISTRIBUTION

VERTICAL COMPONENT

OF DIAGONAL TENSION

Figure 99. Lateral Loading of Upright in the Plane of the Web
I

The integral in the deflection function Equation A27 can be evaluated as

h

I .vx 2wx 2 qoy hqoy cos_- sin-- dx -
o h 3

hence

h
y-

8_2p
cr

N

Z

qoy h + _ Qi sin--
i=l

2_C i

h

p 14Pcr 4Pcr 8_ 2

The slope and stress at any point x then becomes

2h N 2_rC i

l -_-wq°Y + i=IE Qi sin_h
0-

4wPcr 1 P Foh 1 14.324Pcr 4Pcr 8w 2

sin --

COS

1TX

h
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and

_z bending -

EI
z

2hPcrZ

N

Zh 2wCi

3---_qoy + i=l_ Qi sin--h

1 P Fo l 4= 2

4Pcr 4Pcr 8w2 3

2 _x

sin "--
h

Again to this bending stress add the compressive stress due to axial loads to

get total stress as

¢z = _z bending + ¢comp + _local

The bending stress can be easily computed for

]--+- -- <I

4Pcr 4Pcr 8Tr2

by use of Figure 99 where the amplification factor was defined as

Amplification factor = Aanti =

l -- m

P Foh 1 /4__%2
_ •

4Pcr 4Pcr 8_ 2

where Pcr to be used here is that critical load necessary to buckle in the

first buckling mode, i.e., the critical buckling load required for antisym-

metric buckling (two half-waves) is greater than lowest symmetrical buckling

(one-half-wave) by a factor of four times when P acts alone.
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STRAIGHT

APPENDIX B

NUMERICAL EXAMPLES

BEAM NUMERICAL EXAMPLE

Partial-tension-field beam is exposed to the vertical and lateral loading.

Determine the stresses in the web, considering different loading sequences.

SYSTEM

a

(TYP)

L = 8 SPACES AT 2.0 FT = 16.0 FT

h = 2.5 FT

The 7075-T6 aluminum alloy beam is symmetricat about CL. The

thickness of the webs t = 0. 05 inch. For this example, assume the flanges

and stiffeners to be rigid enough in comparison with the web - flexibility.

LOADING

Vertical loading:

Lateral loading:

STATICAL ANALYSIS

g = 0.50 k per foot

p = 0. I0 psi

Shear diagram due to the vertical loading g:

Reaction R A = gL/2 = I/2 x 16 ft x 0. 5 = 4 k

V 1 = RA- ga = 4- 0.5 x 2 = 3 k

V 2 = Vl - ga = 3 - 1 = 2 k
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k
V 3 = V 2 - ga = 2 - I = I

V 4 = V 3 - ga = 1 - 1 = Ok

Moment diagram due to vertical loading:

M1 = R A x a - ga 2/2 = 7k-ft

M 2 = R A x 2a - g(2a)2/Z = 12 k

M 3 = similar = 15 k

M 4 = similar = 16 k-ft

Check:

max M = M 4 = gL2/8 = 0. 5 x 162/8 = 16 k-ft

INVESTIGATION OF VERTICAL LOADING ONLY

Maximum shear for the first bay will be assumed as Vma x = 4k; for the

second bay, maximum shear will be assumed Vma x = 3k.

First Bay (see Figure 51).

T O = V/th =
4000

0. 05 x 30 in.
= 2680 psi

The critical shear (see Equation i-2)is:

"cr : Rh+Z (Rd- Rh)(;)

The web will be calculated as a very thin one (in accordance with

Figure 24).

24
a/t = O. 0-----_= 480

Assuming a simple supporting on all four sides will be R h = R d = i. 0.

Modulus of Elasticity: E = I0.3 x 106 psi.
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Figure 13, page 19 is as follows:

h 2.5

d 2,0 - 1.25=>kss = 7.25

Consequently

Tcr = 7.25X i0.3 X I06 /0"05_ 2

The postbuckling range governs.

Determination of the factor k is as follows:

= 320 <2680 psi

From the graph (Figure 5),

TO 2680

Tcr 320
- 8.4 =>k = 0.44

For a, assume 45 degrees in order to simplify the calculation

(see page 8).

¢c = -T O (l-k) sin 2a = -2680 x (1 -0.44) = -1500 psi

2 kT

_ O + Tct (l-k) sin 2a =
sin 2a o

2 x 0.44 x 2680
+ 1500 = +3850 psi

Second Bay (see Figure 51 for flow diagram. )

T O = V/th =

Factor k (Figure 5):

3000 ib

0. 05 x 30
= 2000 psi

TO 2000

Tcr 320

- 6. 25=>k = 0.38, a = 45 degrees

In accordance with the equations on page 8,

¢c =-To (l-k) sin 2a = -2000 x 0. 62 = -1240 psi

2 kT o
ct - sin 2a + T° (l-k) sin 2a =

2 x 0.38 x 2000
+ 1240 = +2760 psi
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INVESTIGATION OF THE LATERAL LOADING ONLY

(See Figure 51, page 97, and equations on page 49.)

(h) z ( 30U = p2 E = 0. 12 x 10.3 x 106 x \0.05! = 37 x 109

/U = 3330

Stresses: (From Figure 51, obtain r12 and _13)

_a = rig _/U = 0.26 x 3330 = 870 psi

_b = r13 _/U = 0. 19 x 3330 = 635 psi

Corresponding with c_ = 45 degrees

870 + 635

H_I = H °-2 = 2 = 755 psi

SIMULTANEOUS CONSIDERATION OF BOTH, VERTICAL AND LATERAL

LOADING

Fir st Bay

= 1500c

= 755
H 1

745 >Tcrit = 320 psi

(the post-buckling range governs)

The General Procedure ("Frozen Stress" Assumption Valid)

Assume that both loadings will be applied at the same time, starting

from zero, and we want the web to buckle under T* = 446 psi. Then

the corresponding p* will be determined. (See equations on page 9 and

Figure 51. )

o-* = V':-"- Tcr = 446-320 = 126 psi

* = _*12 = 63 psi0-a

0-a ;:'_T _ ;'" _

rl 2 (lo--_ger side)V_2

63 x 0. 05

0. 26 x 30 in. 63•26 x I0. 3 x 106
= 0.001 96 psi

220 -
SID 66-135



NORTH AMERICAN AVIATION, INC.
SPACE and INFORMATION SYSTEMS DIVISION

Consequently, by the catenary system, the following remaining lateral

loading will be taken (see page 95):

,i p_Fp = p - = 0.1 - 0.00196 = 0.09804

TO 2680

T* - 446
- 6.01 =>k = 0.37

The compressive stress will be

_I -- -To (l-k*) sin 2a + o-*

= -2680 (1 - 0.37) + 126 = -1559

Tensile prestressing:

k;:"
2 TO ;I-"

0-II/- sin 2a + TO (l-k;::) sin 2a + ¢

2 x 0.37 x 2680
+ 1685 + 126 = 3796 psi

= r A = 3796 x 1 x 0.05 = 189 IbHo _II

Deflection at buckling:

3_p;:" (longer side)6 = ql (longer side) Et

= 0.26 x 30
3_1 0.00196 x 30

0. 3 x 106 x 0. 05
= 0. 0378 in.

To find 0-ii, enter the following data into the FORTRAN program:

1. H o = 189 lb

Z. A = 1 x 0.05 in. 2

3. 6 = 0. 0378 in.

11

4. p = 0. 09804 lb per inch

5. E = 10.3 x 106 psi
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The output is H = 250.9 pounds; Ymax = 0. 05645

Consequently,

250.9 = 5018 psi
_II - 0. 05

Assume that the beam is vertically preloaded. Then the web will

* Total p will be applied to the postbuckling stage only.buckle at T = Tcr.

Consequently:

p = O; o'":" = O

TO 2680

rcr 320

- 8.4 => k = 0.44

O" = -T

I o
(l-k) sin 2_ + o-

-2680 (1-0.44) + 0 = -1500 psi

/ 2 kTo
+ T (l-k) sin 2_ =

°-II sin Z_ o

Z x 0.44 x 2680
+ 1500 = + 3850

1

The component o-ii will be obtained from the FORTRAN program with

the following input:

,

4.

5.

The output is H = 199.41b; y = 0.07247 in.

199.4/1.0 x 0.05 = 3988 psi.

I. H o -- 3850 x l x 0.05 = 193 ib

2. A = 1 x 0.05 in. 2

E = 10.3 x l06 psi

6 = 0

p = 0. I Ib/in. 2

Consequently, o-ti =
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Assume that the beam is laterally preloaded, then

0-;_= H ffI = 755 psi

O- :_ T ;::
= - TC r

T:_ = _-'_+ Tcr = 755 + 320 = 1075 psi

TO 2680

T;:= 1075
- 2.5 => k -'_= 0.2

o-I = -TO (1-k #) sin Za + o-*

= -2680 (i-0.2) + 755 = -1385 psi

2 k :1=TO ;:.
sin2_ + T° (l-k;:=) sin 2o_ + o-

2 x 0. Z x 2680
+ 2680 x 0. 8 + 755 = 3965 psi

I

In the above case, 0-if = o-ii, because whole p was taken as prestressing.

Alternate General Procedure ("Frozen Stress" Assumption Abolished)

(See page 95 and Figure 52, page 99. )

To 2680

Tcr 320

- 8.40 => k = 0.44

o- I = -r o (l-k) sin 2a = -2680 (1-0.44) = -1500 psi

, 2 kT o
o-, - + T (l-k) sin 2_

II sin 2a o

-- 2 x 0.44 x 2680 + 1500 = +3850 psi

The component _II will be obtained from the FORTRAN program with

the following input:

I. H o = 3850 x l x 0. 05 in. = 193 ib

2. A = 1 x 0.05 in. 2
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3. p = 0. 1 ib per in. 2

4. 6 = 0

The output is H = 199.4 ib; Y = 0. 07247. Consequently, _II =

199.4/i x 0. 05 = 3988 lb.

Second Bay _ = 1240c

755

H l 485 psi > rcr = 320 psi (See page 219.)

Postbuckling range governs

The analysis will not be provided since it is similar to the analysis

presented for the first bay.

Analysis of Uprights and Flanges

--t w = 0.05 IN.

GIVEN: A u = 0.5 IN. 2

ODESIGN = 40 ks_

VERTICAL LOAD ONLY

A numerical example will be made to illustrate the equations to be used

for vertical loading. Consider double upright of "T" shape with cross

sectional area of 0. 5 square inch.

Stress Consideration:

The stress in the upright due to partial tension diagonal folds

page 26) is as follows:

kT tan

0-U = _

AU + O. 5 (l-k)

d t w

(see

(B1)
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where k : 0.44; T = 3850 psi; and _ : 45

the web analysis, therefore,

degrees have been determined in

0.44 (3850) tan 45 °
: - = -2430 psi

U O. 5
+ 0. 5 (i-0.44) (compression)

(24) (0.05)

The formula

-P

°-u A

where (see page 110):

A = A U + twd (0. 5) (l-k)

P = twd (_T sin a + ¢c cos a) (for a = 45 ° )

presented in Section IIIcan also be used. From the analysis of the web

_T = + 3850 psi (tension diagonal fold direction)

_c = - 1500 psi (compression perpendicular to

diagonal fold direction)

Hence

twd (_T sin_ + _c cos a)

A U+ tw d (0. 5) (l-k)

(BZ)

(0.05) (24) (3850 sin 45 ° - 1500 cos 45 °

0. 5 + 0. 05 (24) (0. 5) (i-0.44)

: - 2400 psi (compression)

Comparison between the two stresses show that only l percent variation

exists between the two techniques. This justification should be mentioned

since _U - -P is used for combined loading analysis. Since, _U is less than
A

design, the upright will not fail due to stress.
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Stability Conside ration

Column Behavior

is

The upright should be investigated for column buckling.

d 24
- - 0.8. Since d<l.5h, use (see page 26).

h 30

The d/h ratio

h 30
L e = =

or

L e = 26. 6 in.

The critical load using the effective length Le = 26. 6 inches is (See
Equation A 21, page 209. )

Tr2 EI
P -

cr 2
L e

where

Given:

_ tu
t v tu b tw

t I_-F u _-o.__n.

Ealuminum = 10. 3 x 106 psi

b (2 tu + tw )3 (2 b + tw )3 tu
I = +

12 12

I 130.7 z (0.18 + 0.05)

IZ

[ 132 (o. 7) + o. o5

12

= 4. 97 x I0-2 in.4

(o. 18)
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Therefore

P
cr

or

_2 (10.3 x 106) (4. 97 x 10 -2)

(26. 6) 2

= 7110 lb (compression)

P P
cr cr

O- --

cr A A U + 0. 5 dt w (l-k)

7110

O. 5 + 24 (0. 05) (0. 5) (1-0.44)

Since _U

= 8500 psi

< _cr' the upright will not buckle as a column.

Forced Crippling

k 2/3 t/___w/1/3¢o = c ksi (See page 28.)

For double upright, c = 26 (7075-T6 aluminum)

{0. 18_ I/3

_o = 26 (0.44) 2/3 _0_0--_-/

= 23. 0 ksi
o

Since _u < _o, the upright will not have forced crippling.

Crippling

First we must determine the range of AU

twd

A U 0. 5

= O. 05 (24)
= 0.41
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Since --
A U

twd
> 0. 2, Equation i-4, page 32, governs.

0-CC ---

N

Ai Crcci

i=l

N

i=l

For ¢cc" of the leg attached to the web, we should use _o, the forced cripplingt
value that considers the effect of the diagonal fields. The _cc i for the out-

b 0.7

standing legs are taken from Figure21 for tu 0. 18 3. 9 and is

%ci = 29 ksi.

Therefore,

21A11l_ccil_2I07_018,1[23xi031

2IA21I_cc21:2I07_018,1168x1031
where the number 2 refers to two areas; i.e., one for each side of the web.

O-cc =

2i07,018_I123xi031+2I07,018,116_x
2[o7,018,1+2I07<018_I

10 3 ]

or

_cc = 45,500 psi

Since _U < _cc' the upright of the outstanding leg will not cripple.

Torsional Instability (see Equation 3-47)

Pc r = Io 2 + 2
_. z o h z
A
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where

A = AU +twd 0.5 (l-k) = 0.836 in.2 (Seepage ll0.)

C = GJ (See page I19.)

C1 = E C w = o (See pages 119 and 124.)

I° = Ix + Iy = 2 (4.97 x I0 -Z) in. 4

J

2bt +2bt 
= 5.43 x 10 -3 in. 4

x

z

The preceding sketch shows that zo = h z = 0.

For G = 3. 9 x l06 psi for 7075-T6 aluminum alloy

and

Pcr --

3.9 x 106 (5.43 x 10 -3 )

2 (4.97 x 10 -2)

0. 836

-- I. 78 x 105 Ib

Pcr 1.78 x 105

_c r - A 0. 836
= 2. 13 x 105 psi

Since ¢U < ¢cr, the upright will definitely not fail in torsional buckling.

LATERAL LOADING ONLY

The same cross-sectional area of the upright will be used to illustrate

a numerical example for partial-tension-field beams subjected to only lateral

pressure of O. 1 psi.
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Stress Analysis

The distributed force acting on the upright as shown in the sketch below

is q = pd or q = 0. 1 (24) = 2.4 ib/in.

d = 24 IN.

\

/

_p =0.1 PSI

-!1-----

.,,,,,11,,----

From Table Z, (page 58) the bending moment in the upright is

or

The bending stress is

°-bend- ± Mc = 213 (0. 7) = _nnn p={
I 4. 97 x l0-2 ......

The tensile stress Ct = 870 psi as calculated in the web analysis

induces compressive stress in the upright of

P _ttw d 870 (0. 050) (24)

¢compres sion AU A U 0, 5
= 2100 psi

The total stress in upright is

_Uma x ¢bend + ¢compression

= 3000 + 2100 = 5100 lb per in. 2 (compression)CUmax
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Since _Umax is less than (1) _cr due to column buckling (2) _o due to forced

crippling, (3) %c due to crippling, (4) _cr due to torsional buckling, and

(5) 0-Desig n design allowable, the upright will not fail.

COMBINED LOADING

Consider the combined loading of p = 0. 1 psi and V = 0. 5 k on the

partial-tension field beam.

Stress Analysis

Stress in the upright due to lateral deflection of the upright will first

be considered (deflection out of the plane of the web). The lateral load

intensity acting on the upright is (see page 103)

qoz
p d(h9

2h

or

,0 ,24,(3o
qoz = Z (30) = 2. 26 ib per in.

h
The bending stress at x = -_-(maximum stress point) from Equation 3-20

of Section III is

where

= + Qn s in
°-bend Pcr h Zy

y i=l

Asy m =

P F°h (--_) (w4 1)-1 Pcr 4 Pcr

Qn = Tn

Iy

Zy c

sin _bn + T_ sin _bfi
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Since the slope an = _P_ = 0, Qn = 0.

The bending stress reduces to

A
E c qoz sym

_bend = Pcr
Y

For d<h (since our d = 0. 8h) it is recommended that F o be included in P

where P is defined by (see page ll0)

_T twd sin _ (1 + tan _)
P = +

t d cos _ (i + tan _)
C V_

2 Z

Thus, for d<h, Asy m reduces to

l

Asy m = p
1

P
cr

From web analysis and FORTRAN

CT = 5018 psi

= -1559 psi
C

= 45 degrees

p __

5018 (0.05) (24) sin 45 ° (i + tan 45 °)

2

(-1559) (0.05) (24) cos 45 ° (1 +tan 45 °)

or

P = 2935 Ib

Asy m - 2935
l

7100

-- 1.70
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10.3 x 106 (0.7) (2.26) (1.70)

_bend = 7110 = 3893 psi

The value of Asy m can also be obtained from Figure 63 for

F°h- 0.
4

P

P
cr

- 0. 32 and

The compressive stress for d<h is (see Equation 3-21 )

= P P _ 2935

°-compression -_-= A U + 0. 5 twd (l-k) 0. 836
- 3510 psi

°-U = _bend + °compression = 3893 + 3510 = 7403 psi

The upright will not fail in strength since _U < _Design" Since _U < _cr where

_cr = 8500 psi, the upright will not fail in column buckling. The upright will

not buckle in forced crippling, crippling, or torsional buckling since _u < _o,

_U < _cc' and _U < _cr"

Now consider the stresses in the upright when the upright deflects in

the plane of the web.

Force intensity R o is (see page 103)

Ro = _T tw cos a + _c tw sin

R o = 5018 (0.05) cos 45 ° - 1559 (0.05) sin 45 °

or

R
o

h

At x =-_- (from Equation 3-24)

= 122 lb/in.

EIz AAnti [ 2 ]°-bend - 2h Pcr Zz -_ R°h
z

E AAnti Roc

3_ P
cr
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where

l
Aanti = = i. 09 for d<h

P
l

4P
cr

i0.3 x 106 (I. 09) (122) (0.7)
= = 14, 298 psi

_bend 3Tr 7110

_U _bend + _compression 14, 298 + 3510 = 17,808 psi

Since _u < _design' the upright will not fail due to material.

Stability Criteria

The stress in the upright (_U = 17,808) must be less than the following

buckling criteria or failure will exist.

i. Column behavior for antisymmetric buckle shape

= 4 = 4 (8500) = 34,000 psi
¢c rAnti _c r sym

_°

°

0-U < ¢CrAnti

Therefore, upright will not fail in column buckling in the

antisymmetric mode.

Forced crippling

Therefore,

C r ippling

o-° = Z3, 000 psi

o-U < 0-o

upright will not fail due to force crippling.

= Z6,000 psiO-cc

°-U < _cc

Therefore, upright will not fail due to crippling.
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. T or sional instability

_cr = 2. 1B x 10 5 psi

_u < _cr

Therefore, upright will not fail due to torsional instability.
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CURVED BEAM NUMERICAL EXAMPLE

To demonstrate the analysis procedure, a curved semitension

field beam web will be analyzed. It is assumed that the beam is a section

of a cylindrical structure loaded as shown in Figure 100.

The structural configuration is indicated as follows:

Geometry:

A = 0. 75 in.2 R = 122. 5 in.
FL

A U = 0.50 in.2 d = 30 in.

t = 0. 025 in. h = 24 in.

Double uprights and flanges with pinned joints.

Material properties (7075-T6 aluminum alloy):

_ =0.32

0-ty = 64.5 ksi

_bru = I08-137 ksi (e/D = 1.5-2.0)

_tu = 72 ksi

E = I0.3 x l06 psi

Loading:

2S = 40, 000 ib

p = l psi (internal pressure)

Compute critical web shear buckling stress (no lateral pressure

loading) as follows:
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h

(TYPICA L )

2S
(TYPICAL AT 8 POINTS)

t
(a) OVERALL STRUCTURAL

LOADING CONFIGURATION

2S
(TYPICAL AT 8 POINTS)

(b) ANALYTICAL MODEL

\

\
\
\
\
\
\
\
\
\
\
\
\

Figure I00. Curved Beam Numerical Example Configuration
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rcr = ks
r(2 Eh 2

12 R 2 Z 2 (See Equation 4-3. )

d/h = 30/24 = 1.25

h 2
Z = _ _/I - 2 =

Rt

(24) 2

122.5 (0. 025)
_/1-(0.32) 2

= 179

k (Figure 74)= 41
s

r = 41
cr

(3. 1416) 2 10.3 (10) 6 (24) 2

12 (122.5) 2 (179) 2

= 417 psi

Compute P
o

as follows :
cr

pO
cr = -0.92 Et----2dR (See Equation 4-63. )

= -0.92
10.3 (106 ) (0.025) 2

30 (122.5)

;1: 2

Pr

= -0.023 psi

(See Equation 4-59. )

T ;:" Z

1-0. 023

417

= 1

- _/I + 43.48

T;:" = 2780 psi

Applied T-
S

dt
2o, 000/(30) o. 025

= 26,700 psi
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Therefore, the web is buckled under this combination of loads. To

find the maximum internal pressure at which the applied vertical loading

will cause buckling, Equation 4-59 may be used again.

+ - 1
-0. 023

P;:"= 0.023 (I - 4090.)

= 94 psi

This is not a reasonable pressure because the membrane stresses of

the web would reach ultimate value before this pressure could be applied.

The value of the diagonal tension factor, k, is found by using Figure 80.

V 26, 700
T 417

cr

- 64

td
300 R---h= 300

o. o25 (30)
122.5 (24)

= 0. 0765

From Figure 80, k = 0.78

To compute the angle of diagonal tension, a ,

h_ 24 ,/i0.3 (I06)122.5v 700

 /l+R R

= 2.72

24 (0. 025)
l+Rs I+ 0.5

1 + R R 30 (0.025)
1 + 0.75

=l. 1

From Figure 81 .

aPDT = 43.3 °

use Figure 81.
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For

To estimate , use Figure 81(C).

k= 0.78

a/_PDT : 0.95

= 0.95 (43.4)

= 41.2 °

A U A
The data curve of this figure is based on__= 1. O0 = F________L

ht dt

In this case,

A U 0. 5

ht 24 (0. 025)
- 0.83

and

AFL = 0.75 = 1.00
30 (0. OZS)

In computing stress in post-buckled catenary elements, the initial

conditions of the catenary are

Length (Figure 78):

Length = 0 2 r 2

co ]= - -i (See Equation 4-5. )

1 + KI2/

1 - cos _ sin

IC1 = h
s in

2R

(See Equation 4-6. )

I - 24cos 2--_-) sin 41. 2 °

24
sin 245
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SIN 66- 135



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

0.00486 (0.65869)

O. 09691

= 0. 0320123

82 = c°s-1 2 + 0 _/ -1

= cos -1 (0.9918164) = 7.33333 degrees

= 0. 12798 radians

Then, as per Equation 4-7, it follows

r2 =

R

122.5

O1

sin 2 --2- (i __)2sin 2a + R - cos

= 281 in.

2(1-cos_)

2 24
s in

245
+ 122.5

(0. 65869) 2

2 1 - cos

Initial length of the catenary element is

S = @2 r2

= 35.99 = 36. in.
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Initial stress in the catenary element is

, 2k T O

_II = kin 2a + TO (l-k) sin2a (See Equation 4- 9.}

2 (0.78) 26, 700

Sin 82.4 + 26,700 ( 1 - O. 78) sin (82.4) °

= 42, n_n -_ 5, u_2u_v , Q9

--47, 840 psi

6=R

= 122.5 (1 -

= 0. 587 in.

The initial catenary end load is 47,840 (0.025) = 119.6 lb.

Initial deflection {before panel buckles) is

cos 22--_)

After buckling, the panel is flat arid initial catenary deflection is

assumed to be zero before lateral pressure loading is applied.

Initial catenary conditions:

DISTRIBUTED LOADING = ].0 LB/IN.

 1111111111111111111
= 36 INCHES =-

Initial tension in the element equals 119.6 pounds (before pressure load is

applied); the element cross-section equals l x 0.025 in. ; E = 10.3 (106) psi.
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This input data applied in the FORTRAN program of the appendix

produces the final element loading due to the total combined loading, and

the maximum element deflection. These values are:

H 289

°-II= A = 0.025 = Ii,560 psi

y = 0. 56 inches

The ultimate tensile stress of the material is 72 ksi. This value of

72 ksi must be reduced by any effect due to stress concentrations at the

edges of the sheet at the upright and flange attachments and compared to

0-ii.
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o

APPENDIX C

FORTRAN

FORTRAN IV PROGRAM FOR CATENARY ANALYSIS

The following paragraphs present the details on the use of the

FORTRAN IV IBM (7094) digital computer program developed for the

analysis of extensible catem_ry with an initial zero deflection which is pre-

stressed before the erection and then loaded with the arbitrary loading Pi"

The program also computes an approximate solution for a prestressed

extensible catenary with an initial deflection and arbitrary loadings.

The essential features of the S&ID catenary with vertical loading

analysis program (8K-RB2) are described. The program may be used to

analyze the behavior of catenary under different loading. The description

of the method of analysis, assumptions, and input and output format explains

how the program operates.

ANALYSIS

A catenary system prestressed with applied loading and zero

deflection is shown in Figure 101. A prestressed catenary system with

applied loading and an initial deflection is shown in Figure 102. The

loading PN and distance X N are arbitrary in both figures.

%

I_ X0

P1 P2 P3

i ×, i ×''1"
X3

P4 PN P5

_l_x 
H!

Figure 101. Prestressed Catenary System With Applied

Loading and Zero Deflection
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Pa

L Xo =1= xl =1=

P2

X2

A

_ x3 _1_ XN .1

PN

P3

H1

Figure 10Z. Prestressed Catenary System With Applied

Loading and An Initial Deflection

Utilizing the applied loading and distances, the FORTRAN IV program

computes the following numerical data:

a. Vertical Reactions

b. Shear s

c. Moments

If the pretensioned catenary (with H I) is erected before the loading

is applied, then the initial deflection is equal to zero. The program

computes the "extensible" horizontal tension (H) from the equation

ZL (H 3 - H 2 H 1) - ZAE = 0

by the cubic subroutine, and uses the horizontal tension to solve for the

deflection Y ([) = Moment/H, tension T = _/Shear 2 + H 2, and total span

length S. The analysis is now completed for Figurel01. The final

extensible shape of loaded catenary is determined.

In the second case when the initial deflection is not equal to zero the

program computes the inextensible horizontal tension due to loading Pi

without prestressing consideration.

Horizontal tension

MITIaX

H o -
Ymax

(C1)

(CZ)
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Total span of inextensible length

S : S + EL (I) (C3)

The horizontal tension for the extensible catenary is now computed
from the cubic equation.

[ ' I2 H 3 L (1 +a 2) + 2 H 2 EA S - L (1 +_a 2) + Z (2H - EA) = 0 (C4)

by the cubic subroutine, considering loading Pi only, without pretensioning.

This extensible horizontal tension is now added to the prestressing
extensible horizontal tension to obtain the final horizontal tension.

Hfina I = H + H 1 (C5)

Maximum final deflection

Mmax
+ y (c6)

Yfinal - Hfinal max

PROGRAM DETAILS

Input Data

Figurel03is a flow chart of the program. The source deck listing for

the program is shown in Figure 104. Figurel05provides the input data.

Figure 106gives the first example of some initial deflection. Figure 107

gives the example of initial zero deflection.

The input data cards wii1 be sorted on columns 73 through 80 before

the analysis is begun. Therefore, any cards which have improper sequence

numbers will generate an error in the analysis.
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l START ,l

IREAD INPUT DATA
YMAX_, A, H X (I

N, E, , ),

J PRINT INPUT DATA J

COMPUTE

I. REACTION LOADS

2. SHEARS

3. MOMENTS

I i

ZERO DEFLECTION

CALL CUBIC SUBROUTINE

C OM PUTE

PRINT

1.

2.

3.

4.

I. HORIZONTAL TENSION

2. DEFLECTION

3. MOMENT AND SHEAR

4. TENSION AND SPAN

HORIZONTAL TENSION

DEFLECTION

MOMENT AND SHEAR

TENSION AND SPAN

END ]

INITIAL DEFLECTION

COMPUTE INEXTENSIBLE

I. HORIZONTAL TENSION

2. SPAN (LENGTH)

CALL CUBIC SUBROUTINE

COMPUTE AND PRINT

I. FINAL HORIZONTAL TENSION

2. FINAL MAXIMUM DEFLECTION

3. FINAL MAXIMUM TENSION

Figure I03. Flow Chart of the Program
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Data Page 1

Card 20000001

Number of increments

Card 20000002

Maximum deflection

Modulus of elasticity

Area

Prestressing Tension

Card 20000003 or 4 . . . i

Distance between applied load

Applied load

Output Format

Figures 100and 107describe the output format of the program:

Output Data For Zero Deflection

Extensible catenary length

Horizontal tension

CAPY (I) Load

(deflection)

Output Data For Initial Deflection

Inextensible catenary length

Horizontal tension

Shape

Extensible catenary length

Horizontal tension

CAPY (I) Load

Final horizontal tension

Final maximum deflection

Final maximum tension

Moment Shear

Moment Shear
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The FORTRAN program which determines the stress and deflection of

a pretensioned catenary with the initial deflection (due to unknown loading)

is an approximate one. The prerequisite for the usage of this program is

a comparatively large prestressing and very small lateral loading. These

prerequisites are always satisfied in the case of partial-tension-field beams.

The program will handle both components independently: pretensioning and

lateral loading. The resulting stresses will be added algebraically, and this

is an approximation. In reality the stresses will be smaller; consequently,

the program is on the safe side. The maximum deflection, however, will be

obtained by Equation C6.

The FORTRAN program which determines the stress and deflection of

a pretensioned catenary with zero initial deflection is an exact one. It may

be safely used instead of the first one, which was described above, if the

initial deflection is very small.

SUMMARY

Given the input data of area, length, deflection, applied load, and

initial tension, the FORTRAN IV program can compute two separate analyses

depending on "zero deflection" or "initial deflection. " The source deck of

the program takes less than thirty seconds execution time on the IBM 7094

and requires less than 400 lines printout per case.
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FORTRAN IV PROGRAM

L

A digital computer program has been developed for executing

Equation 4-46. A detailed description on the usage of the computer

program is presented in this Appendix.

ANALYSIS

The following equation is solved numerically with the IBM 7094
compute r:

2
Pb b

2. 78 _/A E Pb 2 b 2

0.433 _[a (1" - pb) R a] 2 _4+ __2= 0.5 R 2 __2

EA

-R

(C7)

.---__ _ ____.

V
b

L = 2R SIN R/2

By setting Pb equal to some initial value (input data), the IBM program

increments that value by the same amount each time until the equation is

equal on both sides, or within the calculated tolerance.

PROGRAM DETAILS

Input Data

This paragraph describes the input data required for execution of the

numerical procedure.

Data Page 1

Card 30000001

Number of Increments
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Card 30000002

Straight Length

Curved Length

Modulus of elasticity

Area

Radius of curvature

Amount Pb is increased

Card 30000003

J

Tolerance

Output Format

This section describes the printout of the program.

Comparable value = 0. 5 V/4R 2 - _ 2 R

Pb (I) = Incremented input data

S(I) = Pb b2 _[a (I.- pb)Ra]2
2. 78 _/A E pb 2 b 2 - 0.433 4 EA - _72 (ca)

If the value calculated is within the given tolerance, the program will

print out only Pb S and S.

SUMMARY

The FOIZTRANIV program solves the algebraic equation. The source

deck of the program takes less than twenty seconds execution time on the

IBM 7094 and requires less than 300 lines printout per case. Figurel08is

a listing of the source deck for algebraic equations. Figurel091ists the

input data for algebraic equations. Figurell01ists the output data.
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